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1 Introduction

At the core of interpretable machine learning is the question of whether humans are able to make
accurate predictions about a model’s behavior. Assumed in this question are three properties of the
interpretable output: coverage, precision, and effort. Coverage refers to how often humans think they
can predict the model’s behavior, precision to how accurate humans are in those predictions, and
effort is either the up-front effort required in interpreting the model, or the effort required to make
predictions about a model’s behavior.

One approach to interpretable machine learning is designing inherently interpretable models. Vi-
sualizations of these models usually have perfect coverage, but there is a trade-off between the
accuracy of the model and the effort required to comprehend it - especially in complex domains like
text and images, where the input space is very large, and accuracy is usually sacrificed for models
that are compact enough to be comprehensible by humans. Experiments usually involve showing
humans these visualizations, and measuring human precision when predicting the model’s behavior
on random instances, and the time (effort) required to make those predictions [7, 8, 9].

Model-agnostic explanations [12] avoid the need to trade off accuracy by treating the model as a black
box. Explanations such as sparse linear models [11] (henceforth called linear LIME) or gradients
[2, 10] can still exhibit high precision and low effort (which are de-facto requirements, as there is
little point in explaining a model if explanations lead to poor understanding or are too complex) even
for very complex models by providing explanations that are local in their scope (i.e. not perfect
coverage). However, the coverage of such explanations are not explicit, which may lead to human
error. Take the example on Figure 1: we explain a prediction of a complex model, which predicts that
the person described by Figure 1a makes less than $50K. The linear LIME explanation (Figure 1b)
sheds some light into why, but it is not clear whether we can apply the insights from this explanation
to other instances. In other words, even if the explanation is faithful locally, it is not easy to know
what that local region is. Furthermore, it is not clear when the linear approximation is more or less
faithful, even within the local region.

In this paper, we introduce Anchor Local Interpretable Model-Agnostic Explanations (aLIME), a
system that explains individual predictions with if-then rules (similar to Lakkaraju et al. [9]) in
a model-agnostic manner. Such rules are intuitive to humans, and usually require low effort to
comprehend and apply. In particular, an aLIME explanation (or an anchor) is a rule that sufficiently
“anchors” a prediction – such that changes to the rest of the instance do not matter (with high
probability). For example, the anchor in Figure 1c states that the model will almost always predict
Salary ≤ 50K if a person is not educated beyond high school, regardless of the other features. Such
explanations make their coverage very clear - they only apply when the conditions in the rule are
met. We propose a method to compute such explanations that guarantees high precision with a high
probability. Further, we present empirical comparison against linear LIME and qualitative evaluation
on a variety of tasks (such as text/image classification and visual question answering) to demonstrate
that anchors are intuitive, have high precision, and very clear coverage boundaries.
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Feature Value
Age 37 < Age≤ 48

Workclass Private
Education ≤ High School

Marital Status Married
Occupation Craft-repair
Relationship Husband

Race Black
Sex Male

Capital Gain 0
Capital Loss 0

Hours per week ≤ 40
Country United States

(a) Instance (b) Linear LIME explanation

IF Education ≤ High School
THEN PREDICT Salary ≤ 50K

(c) aLIME explanation (anchor)

Figure 1: Explaining a prediction from the UCI adult dataset. The task is to predict if a person’s
salary is higher than 50,000 dollars (>50k) or not (≤50K).

2 Anchors as Model-Agnostic Explanations

Let the model being explained be denoted f , such that we explain individual predictions f(x) = y. Let
an anchor c ∈ Cx be defined as a set of constraints (i.e. a rule with conjunctions), Cx being the set of
all possible constraints that are met by x. For example, in Figure 1c, c = {Education ≤ High School}.
We assume we have a distribution of interest D, and that we can sample from D(z|c, x) - that is, we
can sample inputs where the constraints for the anchor c are met. The reason to condition on x is that
D may depend on the instance being explained (for example, see image classification in Section 4).
The precision of an anchor is then defined as the expected accuracy (under D) of applying the anchor
to instances that meet its constraints, formalized in Equation 1.

Precision(f, x, c,D) = ED(z|c,x)[1f(x)=f(z)] (1)

As argued before, high precision is a requirement of model-agnostic explanations. It is trivial to get a
perfectly precise (yet useless) anchor by having the constraint set be so specific that only the example
being explained meets it. In order to balance precision, coverage and effort, we optimize the objective
in Equation 2, where we try to find the shortest anchor with high precision. The length of the anchor
can be used as a proxy for effort, and more specific (longer) anchors will naturally have less coverage.

min
c⊆Cx

|c| s.t. Precision(f, x, c,D) ≥ 1− ε (2)

Algorithm: Solving Equation 2 exactly is unfeasible – precision cannot be computed exactly for
arbitrary D and f , and finding the best c has combinatorial complexity. To address the former, we
approximate the precision via sampling, and solve the probably approximately correct (PAC) version
of Equation 2 so that the chosen anchor will have high precision with high probability. For the latter,
we employ an algorithm similar in spirit to lazy decision trees [4], where we construct c greedily. In
particular, at each step, we want to pick the constraint that dominates all other constraints in terms of
precision, until the stopping criterion in Equation 2 is met. For efficiency, we want to sample as few
instances as possible to make each greedy decision. We use Hoeffding bounds [6] for the differences
in precision to decide when a constraint dominates all the other constraints with high probability. This
uses the same insight as Hoeffding trees [3], with the key difference that we can control the sampling
distribution, and thus can use the bounds to sample the regions of the input space that reduce the
uncertainty between the precision estimates with as few samples as possible. Due to lack of space,
we omit the details of the algorithm.

3 Simulated Experiments
In order to evaluate the difference between linear LIME and anchor LIME (aLIME) in terms of
coverage and precision, we perform simulated experiments on two UCI datasets: adult and hospital
readmission. The latter is a 3-class classification problem, where the task is to predict if a patient will
be readmitted to the hospital after an inpatient encounter within 30 days, after 30 days, or never.

For each dataset, we learn a gradient boosted tree classifier with 400 trees, and generate explana-
tions for instances in the validation dataset. We then evaluate the coverage and precision of these
explanations on a separate test dataset. We use ε = 0.05 for anchor (that is, we expect precision to
be close to 95%) unless noted otherwise, and consider that a linear LIME explanation covers every
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(b) Precision with varying K
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(c) Coverage with varying K

Figure 2: Adult dataset
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(c) Coverage with varying K

Figure 3: Hospital Readmission dataset

other instance within distance τ , where τ is a parameter that we vary. For aLIME, we sample from
D(Z|c, x) by sampling whole rows from the dataset except for the features constrained by c. We
evaluate K explanations, chosen either at random (RP) or via Submodular Pick (SP), a procedure
that picks explanations to maximize the coverage [11], on the validation.

We show precision-coverage plots of a single explanation (K = 1) in Figures 2a and 3a, where we
vary τ for linear LIME and ε for aLIME. The results show that for any level of coverage, aLIME
has better precision than linear LIME. Furthermore, using submodular pick greatly increases the
coverage at the same precision level. Linear LIME performs particularly worse in the dataset with the
highest number of dimensions (hospital readmission), where the distance degrades. We note that one
of the main advantages of aLIME over linear LIME is making its coverage clear to humans - without
human experiments, there is no way to know what these plots look like for linear LIME, but we can
expect them to be the same for aLIME.

We vary the number of explanations the simulated user sees (K) in Figures 2b, 2c, 3b and 3c. In
order to keep the results comparable, we set ε = 0.05 and picked τ such that the average precision
at K = 1 for linear LIME was at least 0.95. In both datasets, aLIME is able to maintain higher
precision regardless of how many explanations are shown, with coverage that dominates linear LIME.
It is worth noting that both datasets are of the same data type (tabular), and are such that the behavior
of the model is simple in a large part of the input space (good conditions for aLIME), as demonstrated
by the top 2 anchors that maximize coverage for each dataset in Figure 4. While these models are
complex, their behavior on most of the input space (65% for adult and 81% for hospital readmission)
is covered by these simple rules with high precision.

IF Education ≤ High School
THEN PREDICT Salary ≤ 50K

IF Marital status = Never married
THEN PREDICT Salary ≤ 50K

(a) Adult

IF Inpatient visits = 0
THEN PREDICT Never

IF Inpatient visits ≥ 2 AND Emergency visits ≥ 1
AND Outpatient visits ≥ 1

THEN PREDICT > 30 days
(b) Hospital readmission

Figure 4: Top-2 anchors chosen with Submodular Pick for both datasets
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Data and prediction Explanation
Sentence Tag for word play IF THEN PREDICT
I want to play ball. VERB previous word is PARTICLE play is VERB.
I went to a play yesterday. NOUN previous word is DETERMINER play is NOUN.
I play ball on Mondays. VERB previous word is PRONOUN play is VERB.

Table 1: Anchors for Part of Speech tagging

(a) Original image (b) Anchor for “Zebra” (c) Images with P (zebra) > 90%

Figure 5: Image classification: explaining a prediction from Inception, and examples fromD(z|c, x)

4 Qualitative Examples
Part-of-Speech tagging: We use a black box state-of-the-art POS tagger (http://spacy.io), and
explain tag predictions for the word play in different contexts in Table 1. The anchors demonstrate
that the POS picks up on the correct patterns. Furthermore, they are short and easy to understand.
Anchors are particularly suited for this task, where the dimensionality is small and the behavior of
good models is more easily captured by IF-THEN rules than linear models.

Image classification: We use aLIME to explain a prediction from the Inception V3 classifier on an
image of a Zebra in Figure 5, where we first split the image into superpixels. The anchor in Figure
5b means that if we fix the non-grey superpixels, we can substitute the greyed-out superpixels by
a random image, and the model will predict “zebra” around 95% of the time. To illustrate this, we
display on Figure 5c a set of images from D(z|c, x) (i.e. where the anchor is fixed), and the model
predicts “zebra”. While this choice of distribution produces images that look nothing like real images
(Figure 5c), it makes for more robust explanations than distributions that only hide parts of the image
with gray or dark patches ([5, 11]). This anchor demonstrates that the model picks up on a pattern
that does not require a zebra to have four legs, or even a head - which is a pattern very different than
the patterns humans use to detect zebras.

Visual Question Answering: Visual QA [1] models are multi-modal, and thus can be explained
in terms of the image, the question or both. Here, we find anchors on the questions, leaving the
image fixed, and use a bigram language model trained on input questions as D. We select two
questions to explain, which are the top rows (in purple) of Figures 6b and 6c. The anchors (in
bold), are respectively “What” and “many”, and we show questions drawn from D(z|c, x) below the
original question. The first anchor states that if “What” is in the question, the answer will be “banana”
about 95% of the time, while the latter states the same about “many” and “2”, respectively – both
explanations clearly indicate undesirable behavior from the model. Again, this kind of explanation is
intuitive and easier to understand than a linear model, even one with high weight on the words “What”
and “banana”, as one knows exactly when it applies and when it does not.

(a) Original Image

What is the mustache made of? banana

What is the ground made of ? banana
What is the bed made of ? banana
What is this mustache ? banana
What is the man made of? banana
What is the picture of ? banana

(b)

How many bananas are in the picture? 2

How many are in the picture? 2
many animals the picture ? 2
How many people are in the picture ? 2
How many zebras are in the picture ? 2
How many planes are on the picture ? 2

(c)

Figure 6: Visual QA: explaining predictions from a CNN-LSTM model by looking at the question
text (image is fixed), and examples from D(z|c, x)
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5 Conclusion

In this work, we argued that high precision and clear coverage bounds are very desirable properties
of model-agnostic explanations. We introduced aLIME, a system is designed to produce rule-based
explanations that exhibit both these properties. IF-THEN rules are intuitive and easy to understand,
and identifying parts of the input that result in prediction invariance (i.e. the rest does not matter)
is similar to how humans explain many of their choices. We demonstrated aLIME’s flexibility by
explaining predictions from a variety of classifiers on a myriad of domains, outperforming linear
explanations from LIME on simulated experiments.
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