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Motivation

Citation Data

• drucker h., schapire r., and simard r. improving performance in neural
networks using a boosting algorithm. advances in neural information
processing systems 5, san mateo, ca. morgan kaufmann.1993 pages
42-49, in hanson, s. j., cowan, j. d., and giles, c. l., editors,

• yoav freund, and robert e. schapire. experiments with a new boosting
algorithm. in proceedings of the 13th international conference on
machine learning. morgan kaufmann, 1996

• freund y., schapire r.e. experiments with a new boosting algorithm, in
saitta l.(ed.), proc of the thirteenth international conference on machine
learning, san francisco, ca, pp.148-156, morgan kauf-mann, 1996

• drucker, schapire, and simard improving performance in neural networks
using a boosting algorithm, advances in neural information processing
systems 5, 1993, 42-49. 14
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Motivation
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Motivation

Pipeline Approach

• Each of the tasks can be solved independently

• However, sharing information can help
• drucker h., schapire r., and simard r. improving performance in

neural networks using a boosting algorithm. advances in neural
information processing systems 5, san mateo, ca. morgan
kaufmann.1993 pages 42-49, in hanson, s. j., cowan, j. d., and
giles, c. l., editors,

• drucker harris, schapire, robert, and simard patrice 1993. improving
performance in neural networks using a boosting algorithm. in
advances in neural informations processing systems 5, san ma-teo,
ca. morgan kaufmann. 1993 42-49.

• Thus, entity resolution should use segmentation
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Motivation

Pipeline Approach

• Cascading error through the stages
• Can be reduced by using N-best lists∗, or sampling†

• Unidirectional information flow
• drucker, schapire, and simard improving performance in neural

networks using a boosting algorithm, advances in neural
information processing systems 5, 1993, 42-49. 14

• drucker harris, schapire, robert, and simard patrice 1993.
improving performance in neural networks using a boosting

algorithm . in advances in neural informations processing systems
5, san ma-teo, ca. morgan kaufmann. 1993 42-49.

∗Sutton & McCallum CoNLL 2005
†Finkel et.al. EMNLP 2006
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Motivation

Iterated Pipeline Approach§

• Close the loop of the pipeline
• Both tasks use information from each other

• Reduces cascading error
• However, still not eliminated
• N-best lists can be used to further reduce this error‡

‡Wellner et.al. UAI 2004
§Hollingshead & Roark ACL 2007
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Motivation

Our Approach To Joint Inference

Integrate models in a single, unified,“fully-joint” factor graph
• To decrease cascading error inference is performed

simultaneously over both tasks
• Increased complexity is handled efficiently by using procedural

hooks in model specification and inference
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Imperatively-Defined Factor Graphs (IDFs)

Factor graphs

• Undirected bipartite graph over variables (x,y) and factors (Ψ)
• A Factor computes a scalar value that represents the compatibility

between neighboring variable values
• Parameters are tied using factor templates.

Tj: parameters {θjk}, feature functions {fjk}, set of tuples {(xj ,yj)}
• Factors instantiated for each of these variable tuples share {θjk}

and {fjk}

p(y|x) =
1

Z (x)

∏
Tj∈T

∏
(xi ,yi )∈Tj

exp

 Kj∑
k=1

θjk fjk (xi ,yi)


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Imperatively-Defined Factor Graphs (IDFs)

Imperatively Defined Factor Graphs (IDFs)

• IDFs provide a single framework for combining declarative and
procedural domain knowledge

• By leveraging imperative constructs (snippets of procedural code)
• A model written as an IDF is a factor graph with all the traditional

semantics of factor graphs
• E.g., factors, variables, possible worlds, scores, partition functions
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Imperatively-Defined Factor Graphs (IDFs)

MCMC Inference and Learning

• Metropolis-Hastings inference on factor graphs
• A configuration of the variables is a sample for MCMC
• To generate the next sample, the proposal function changes values

of some variables

- Customize proposal function to generate an initial set of changes
- Expand the set of changes to other related variables

• Acceptance probability uses the scores given by the parameters

- Identify factors that neighbor these changed variables
- Calculate the features for these factors

• Learning using SampleRank¶

• Parameters are updated when model disagrees with labeled truth
• Shown to be efficient and achieve high-accuracy

¶Rohanimanesh et al. Tech Report 2009
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Imperatively-Defined Factor Graphs (IDFs)
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Imperatively-Defined Factor Graphs (IDFs)

Implementing an IDF

• Specifying an IDF
1 Identify a natural representation of the data (variables)
2 Create factor templates to capture dependencies between variables
3 Create features for each template

• Comparison to Markov logic networks (MLNs)
• Both are Conditional Random Fields (CRFs)
• IDFs use a Turing-complete language to specify graph structure,

while MLNs use first-order logic
• Implemented in the FACTORIE toolkit

• Available at http://factorie.cs.umass.edu/
• For more details,

• Talk to us at the poster session
• See upcoming publication at NIPS 2009
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Joint Model

Bi-directional Joint Inference for Segmentation
and Entity Resolution

• Objective:
• Input: a set of mention strings (e.g., bibliographic citations)
• Output:

• A set of fields for each mention string (segmentation)
• A clustering of the mention strings (entity resolution)

• Separate factor graphs are created for each task
• A unified factor graph is created to model both tasks

• Contains variables for both tasks
• Contains joint factors

• Neighbor variables of different tasks
• Capture dependencies between the tasks
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Joint Model Segmentation

Segmentation

• Variables
• Token: Observed variable representing a word in the mention
• Label: Variable that can take any of the field types as a value

• Field: Consecutive Tokens that have the same label type

• Factors: LabelToken,LabelPrev/NextToken, FieldFactor
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Joint Model Entity Resolution

Entity Resolution

• Variables
• Mention: Variable that takes a single Entity as its value
• Entity: Set of Mentions that are coreferent

• Factors: Affinity and Repulsion
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Joint Model Joint Model

Integrating the Two Tasks

• Variables
• No additional variables are required
• Field variables are added as members of Mention variables

• Joint Factors: connect variables of different tasks
• JointInfBased:

• Connect identical trigrams of Tokens between two Mentions where
the trigram is preceded by punctuation in only one of the Mentions‖

• Forms a weak connection between the tasks since it is sparse, and
does not take the entire predicted Field into account

• JointAffinity, JointRepulsion:
• Connect corresponding Fields between pairs of Mentions
• Utilize features computed over the full predicted Fields between
Mention pairs (e.g., string similarity, number of matching Tokens)

‖Poon & Domingos AAAI 2007
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Joint Model Joint Model

Example Model
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Joint Model Joint Model

The Advantages of IDFs

1 Joint factor templates can make inference intractable
• JointAffinity and JointRepulsion factor templates have

O(m2n4)∗∗ instances in a fully unrolled graph

• IDFs allow such factors through imperative structure definition and
on-the-fly feature calculation

• Evaluating a new sample requires re-scoring only m such factors

2 The proposal function utilizes domain knowledge to implicitly
define and efficiently explore the feasible region

3 Factor templates leverage the flexible separation of data
representation and parameterization provided by IDFs

• E.g., a Field is most naturally represented as a range over
Tokens, and the compatibility between Field pairs is easily
parameterized by a JointAffinity factor

∗∗m = number of mentions, n = number of tokens in a mention
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Experiments

Experimental Setup

• Cora citation dataset††

• 1,295 mentions, 134 clusters, 36,487 tokens
• Evaluated using three-fold cross-validation

• Isolated Models
• Each task is completely independent of the other
• Learn with 5 loops of 100,000 MCMC samples each
• Inference for 300,000 MCMC samples per task

• Joint Models
• Single model over both the tasks
• Learn with 5 loops of 250,000 MCMC samples each
• Inference for 750,000 MCMC samples

• Results are compared to Poon and Domingos’ previous
state-of-the-art isolated and joint Markov logic networks

††Available at http://alchemy.cs.washington.edu/papers/poon07
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Experiments Model Performance

Model Performance

Table: Cora Entity Resolution: Pairwise F1 and Cluster Recall

Method Prec/Recall F1 Cluster Rec.
Fellegi-Sunter 78.0/97.7 86.7 62.7
Joint MLN 94.3/97.0 95.6 78.1

 25.2%Isolated IDF 97.09/95.42 96.22 86.01
Joint IDF 95.34/98.25 96.71 94.62

Table: Cora Segmentation: Tokenwise F1

Method Author Title Venue Total
Isolated MLN 99.3 97.3 98.2 98.2

Joint MLN 99.5 97.6 98.3 98.4
 20.0%Isolated IDF 99.35 97.63 98.58 98.51

Joint IDF 99.42 97.99 98.78 98.72
S. Singh, K. Schultz, A. McCallum (UMass) Bi-directional Joint Inference ECML PKDD 2009 26 / 29
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Table: Cora Entity Resolution: Pairwise F1 and Cluster Recall

Method Prec/Recall F1 Cluster Rec.
Fellegi-Sunter 78.0/97.7 86.7 62.7
Joint MLN 94.3/97.0 95.6 78.1 50-90 mins
Isolated IDF 97.09/95.42 96.22 86.01 ∼3 mins
Joint IDF 95.34/98.25 96.71 94.62 ∼18 mins
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Method Author Title Venue Total
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Isolated IDF 99.35 97.63 98.58 98.51 ∼3 mins
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Experiments Bidirectionality

Bidirectionality
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Figure: F1 of the joint model as different types of factors are added, starting
with the base model containing only isolated model factors. “Semi-Joint”
refers to the model containing weakly joint factors while the “Fully-Joint”
model consists of bi-directional highly-coupled factors.
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Summary

Summary

• Introduce Imperatively Defined Factor graphs (IDFs)
- efficient learning and inference on complex factor graphs

• Utilize IDFs for increased influence between tasks
• Demonstrate significant error reduction and time improvements

• Future Work:
• Joint model for more than two tasks
• Extend to non-MCMC based inference
• Other applications
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Thanks!

Sameer Singh, Karl Schultz, Andrew McCallum
University of Massachusetts, Amherst

{sameer,kschultz,mccallum}@cs.umass.edu

Visit us at the poster session
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