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Abstract

Common coupling (sharing global variables across modules) is widely accepted as a measure of software quality and maintainability;
a low level of common coupling is necessary (but not sufficient) to ensure maintainability. But when the global variables in question are
large multi-field data structures, one must decide whether to consider such data structures as single units, or examine each of their fields
individually. We explore this issue by re-analyzing a case study based on the Linux operating system. We determine the common
coupling at the level of granularity of the component fields of large, complex data structures, rather than at the level of the data struc-
tures themselves, as in previous work. We claim that this is the appropriate level of analysis based on how such data structures are used in
practice, and also that such a study is required due to concern that coarse-grained analysis leads to false coupling. We find that, for this
case study, the granularity does not have a decisive effect on the results. In particular, our results for coupling based on individual fields
are similar in spirit to the results reported previously (by others) based on using complete data structures. In both cases, the coupling
indicates that the system kernel is vulnerable to modifications in peripheral modules of the system.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of software engineering is to produce high-
quality maintainable software. But there is little agreement
regarding how quality and maintainability should be mea-
sured, and whether they can be measured directly. Over the
years, various indirect measures have therefore been pro-
posed. The degree of coupling is one of them: Low levels
of coupling are deemed necessary (but not sufficient) for
high software quality and maintainability (Schach, 2007;
Ince, 1988; Selby and Basili, 1991; Epping and Lott,
0164-1212/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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1994; Basili et al., 1996; Binkley and Schach, 1998; Briand
et al., 1999; Ferneley, 2000; Rilling and Klemola, 2003).

‘‘Common coupling’’ in particular refers to the use of
global variables. It is generally agreed that common cou-
pling induces an unacceptably high level of coupling. But
what constitutes ‘‘a variable’’? Programming languages
allow the use of various constructs for organizing data: sca-
lars, arrays, structures, and in some cases even more
abstract types such as lists and hash tables. If a structure
contains several scalars and two arrays, should the whole
structure be considered as a single entity, or should its
fields and subfields be considered independently?

The question of granularity is important because it
affects the outcome of the evaluation of common coupling.
Previous work using Linux as a case study has employed a
coarse granularity, where large and complex structures are
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2 We note that this terminology is not universal, and many would say
that the file systems and drivers are in fact part of ‘‘the Linux kernel.’’
Accordingly, we are actually referring to the core of the kernel, the part
which is most important from a maintenance point of view because it is
common to all builds and installations. Following Yu et al. (2004), we
identify this as the code residing in the kernel subdirectory. Other possible
definitions are considered in Section 5.3.
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considered single entities in terms of coupling (Schach
et al., 2002; Yu et al., 2004). We argue that a fine-grain
approach may be more meaningful, especially if the fields
are indeed functionally independent. In particular, it may
be that considering a large structure as a single entity leads
to ‘‘false common coupling,’’ where some fields of the
structure are used in one place and other fields in another
place, but no fields are really shared among different
modules.

To check whether this is indeed the case we have devel-
oped a procedure for analyzing fine-grain common cou-
pling in a software product. To demonstrate how this
procedure is applied in practice, we have re-evaluated the
common coupling in the Linux system between kernel
modules, and between kernel and non-kernel modules. In
doing so, we determine whether the results of the study
by Yu et al. (2004) may depend on the level of granularity
adopted in that study when measuring common coupling in
Linux.

Our work can be considered as an elaboration of the
study by Yu et al., in considerably greater detail, and inte-
grating operating system considerations along with soft-
ware engineering issues. In particular, we claim that
common coupling in Linux should indeed be evaluated at
the level of the individual fields of large, complex data
structures, rather than at the coarse-grain level of the com-
pound data structures, as in Yu et al. (2004). The Linux
case study thus also serves to evaluate the appropriate level
of detail when determining common coupling in a large
software product as a measure of software quality and
maintainability.

The rest of this paper is structured in three main parts.
Section 2 provides background on common coupling and
reviews the categorization introduced by Yu et al. (2004).
Section 3 explains the intricacies of analyzing common
coupling when the global variables in question are complex
data structures composed of many fields. Sections 4 and 5
then apply these concepts to the Linux kernel case study –
the same case study as used by Yu et al. Section 6 presents
our conclusions, both regarding the analysis of common
coupling in general and regarding the specific case of the
Linux kernel.

2. Common coupling

2.1. Metrics for open-source software

When measuring the quality of a software product,
metrics based on the code itself have the advantage of
being quantitative, objective, and amenable to mechanized
evaluation. One such metric is the degree of coupling found
in the code. Coupling between software modules measures
the degree to which they are dependent on each other. One
of the basic tenets of software engineering is that modules
should have the lowest feasible level of coupling, because
this enhances software quality and fosters maintainability
(Schach, 2007; Offutt et al., 1993).
Coupling has been validated as a measure of develop-
ment time and fault rate (Ferneley, 2000) and as a predictor
of fault-proneness (Selby and Basili, 1991; Basili et al.,
1996). Coupling has also been validated with respect to a
number of aspects of maintenance, including comprehensi-
bility (Rilling and Klemola, 2003), run-time failures and a
variety of maintenance measures (Binkley and Schach,
1998), impact analysis (Briand et al., 1999), the cost of
maintenance (Ince, 1988), and the cost of making changes
(Epping and Lott, 1994).

Common coupling refers to the use of global (shared)
variables, harking back to the COMMON keyword from
FORTRAN. It is widely agreed that use of common cou-
pling should be minimized, because of the high level of
dependency induced between modules by this form of
coupling (Schach, 2007; Yu et al., 2004).

2.2. Categorization of common coupling

Software is often built in layers. In many cases, there is a
small, basic core of functionality, and on top of it a large
loosely-knit set of tools. Examples are Emacs and Matlab:
both have a stable, slowly evolving core, and many addi-
tional functions or packages, often created by users, that
evolve quickly using the open-source paradigm (Raymond,
2000). In operating systems, the core is the kernel, and
other modules include support for new functionality such
as innovative file systems or new device drivers.2 We term
such software a kernel-based system.

The kernel is by definition the heart of the system.
Everything depends on the kernel functioning properly.
From a maintenance viewpoint, this means that it is highly
desirable that the kernel be as independent as possible from
other software modules. With this in mind, Yu et al. (2004)
have defined five categories of common coupling, based on
the roles that the global variables play.

Every occurrence of a variable in the code can be classi-
fied as either a definition or a use. A definition of a variable
is the assignment of a new value to this variable. A use is
the utilization of the current value of a variable. Yu et al.
(2004) applied this classification to occurrences of global
variables in the code, and then categorized the global vari-
ables as follows:

Category 1: Global variables that are defined in kernel
modules but not used in any kernel module. These can
be interpreted as ‘‘kernel outputs’’; in object-oriented
terminology, they serve as ‘‘get’’ methods (accessors)



variable_name:

kernel module non–kernel module

def–use
relationship

Fig. 1. Graphical notation to describe categories of common coupling.
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for some internal kernel attribute. As such, their use is
reasonable.
Category 2: Global variables that are defined in a single
kernel module, and used in other kernel (and non-
kernel) modules. Such a global variable can be inter-
preted as a ‘‘get’’ within the kernel in addition to being
a ‘‘get’’ used by external modules. Again, this is
reasonable.
Category 3: Global variables that are defined in several
different kernel modules. This causes the different kernel
modules to be dependent on each other, and is therefore
an undesirable usage mode.
Category 4: Global variables that are defined in non-
kernel modules and used in kernel modules. Although
this creates a dependency of the kernel on non-kernel
code, it may be necessary as an input mode; in other
words, this is similar to a ‘‘set’’ method (mutator) of a
kernel attribute. It therefore may be unavoidable.
Category 5: Global variables that are defined in both
kernel and non-kernel modules, and used in kernel mod-
ules. This is an extreme form of coupling between kernel
and non-kernel code, and is highly undesirable.

Yu et al. also introduced a graphical notation to
describe the categories of common coupling. Fig. 1 shows
a schematic example. The name of the global variable in
question is noted at the top left. Modules are represented
by rectangles. An arrow points from each module that con-
tains a definition to each module that contains a use
(regardless of whether these specific definitions can actually
affect these specific uses). If two modules are connected by
a two-headed arrow, then there are definitions and uses in
both modules. A dashed or dotted line defines the kernel
boundary: Modules that appear within it are kernel mod-
ules, and those that are on the outside are non-kernel
modules.

3. Common coupling applied to structures

3.1. The two dimensions of global variables

The above discussion of common coupling implicitly
assumes that global variables are independent monolithic
entities. But in practice, computer programs are rife with
complex data structures that include many different parts.
In addition, they may have many distinct instances of each
such data type. As a result, we find that global variables
may be viewed in a two-dimensional space.
The first dimension involves the components of the data
structure. When different modules access different compo-
nents of the same data structure, this implies some sort
of syntactic coupling between them. This is a distinct
phenomenon from the common coupling discussed above,
which occurs between modules that access the same global
variable. Importantly, the two forms of coupling can inter-
act, and this interaction can affect the results of the
analysis.

Yu et al. (2004) considered each structure as a single,
monolithic entity, thus allowing the syntactic coupling
between fields to come into play. We claim that it may be
more meaningful to decompose structures into their con-
stituent fields, and treat each one independently. This
reflects the fact that in many cases the fields are indeed
independent, and different fields are used by different parts
of the program. Treating the structure as a unit then leads
to what we may call ‘‘false common coupling,’’ as the dif-
ferent modules do not in fact access the same global vari-
ables – rather, they access different global variables that
happen to be only syntactically related.

The second dimension involves instances of the data
structure. A computer program typically creates many
instances of each compound data type that it defines. We
claim that it is proper to identify global variables that are
distinct instances of the same structure (or rather, instances
of the same fields within the same structure) with each
other. The reason is that code is typically organized accord-
ing to the data on which it operates. Accordingly, it is typ-
ical to find that accesses to a certain field are done from
only a small number of functions. This is in contrast to
the use of primitive data types – it would be ludicrous to
suggest that all instances of, say, integer variables be iden-
tified with each other, as these variables are typically
indeed independent and accessed by distinct code segments.

The important point is that the functions that handle a
given complex data structure are called to handle all the
different instances of the structure that may be instantiated
at runtime. In particular, they may be called to handle the
same instance. From a code maintenance point of view, this
means that the functions may operate on the same data,
and are therefore coupled to each other.

In short, we propose that instead of using the intuitive
approach of regarding each instance of a structure as an
independent global variable, one should decompose struc-
tures into their fields, and collapse the fields from different
instances into a single entity (Fig. 2). The following two
subsections elaborate on these concepts.

3.2. Decomposing structures into fields

Consider the following C declaration of a compound
data structure:

struct struct_type_1 {

int f1;
int f2;
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Fig. 2. The 2D space of compound global variables. Rather than defining a global variable as an instance of a structure, we decompose structures into
their fields, and collapse fields across instances.
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int f3;
}s;

That is, s is a variable of type struct_type_1, and has
three integer fields.

Suppose now that fields s.f1 and s.f2 are functionally
independent, that is, there is no relationship between the
values of the two fields, and they are not used or defined
in the same modules. Specifically, denote a module using
s.f1 by m1, and a module using s.f2 by m2. Now consider
the statement

s:f1 ¼ 1;

in module m1, and the independent statement

s:f2 ¼ 2;

in module m2. When performing coarse-grain definition-
use analysis, these statements are both definitions of s,
because variable s appears on the left-hand side of the
assignment operator. As a result, we will find that modules
m1 and m2 are coupled to each other. However, when per-
forming fine-grain analysis, the first statement is a defini-
tion of only the field s.f1, and the second is a definition
of only the field s.f2. As a result these statements do not tes-
tify to any coupling between module m1 and module m2,
which remain decoupled when fine-grain analysis is
performed.

The reason that this is important is that treating the
whole structure as a single unit may create an impression
of a high degree of coupling that is not really there. An
k_file_1 nonk_file_2

nonk_file_4k_file_1

k_file_3k_file_1

s.f1 (category 1):

s.f2 (category 2):

s.f3 (category 4):

Fig. 3. Three fields of categories 1, 2, and 4, respectively (left) can make the wh
denotes the kernel boundary.
example of how this may happen is given in Fig. 3. Assume
that the fields of the structure declared above are accessed
by kernel and non-kernel modules according to the pattern
shown on the left of this figure: Field s.f1 is defined in ker-
nel file 1 and used in non-kernel file 2; field s.f2 is defined in
kernel file 3 and used in kernel file 1; and field s.f3 is defined
in non-kernel file 4 and used in kernel file 1. Given such
access patterns, each of the fields constitutes a well-
behaved global variable: s.f1 belongs to category 1, s.f2
belongs to category 2, and s.f3 belongs to category 4. But
if we look at the whole structure as a single entity (right
of Fig. 3), we find that this pattern of accesses leads us to
categorize s as a category-5 global variable.

The same considerations imply that structures should be
decomposed even if they are nested at several levels. For
example, consider a structure that includes another struc-
ture as one of its fields. We can then encounter statements
such as

s:f1:sf2 ¼ 3;

s:f1:sf4 ¼ 5;

If subfields sf2 and sf4 are functionally independent in the
structure s.f1, they should be treated as independent global
variables. The same applies if a structure includes a pointer
to another structure, and we find statements of the form

s:f2–>sf6 ¼ 7;

Here, subfield sf6 of field s.f2 (or rather, pointed to by field
s.f2) should be treated as an independent global variable.
nonk_file_4

nonk_file_2

k_file_3k_file_1

s (category 5):

ole structure look like a category-5 global variable (right). The dotted line
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In the sequel, when we talk of individual fields of a struc-
ture, we will typically mean all nested subfields as well.
3.3. Collapsing runtime instances of the same structure

Structures rarely appear only once in a program. It is
much more common to have many instances of the same
structure, organized as an array or linked to each other.
This is analogous to the instantiation of multiple instances
of an object in an object-oriented program.

Even in a non-object-oriented language like C, the code
that handles such structures is typically generic. It can (and
often does) handle any of the instances that are created at
runtime. It is extremely uncommon to have distinct pieces
of code handling distinct instances of the same data type.
This motivates the notion that the different instances
should be collapsed and treated as one for the purpose of
analyzing common coupling.

For example, consider the following definition of a
structure that can be used as an element of a linked list:

struct struct_type_2
{

int f1;
int f2;
struct struct_type_2 *next;

}

A program might then include the following code
segment, which traverses the list, using and modifying the
data in it. This C notation assumes that head points to
the head of the list, that the list is terminated by a pointer
with value NULL, and that ptr is a pointer to type
struct_type_2:

for(ptr = head; ptr != NULL; ptr = ptr–>next){

sum += ptr–>f1;
ptr–>f1 /= sum;

}

The question is which global variables are being accessed.
At runtime, many instances of type struct_type_2 may be
created and linked to each other. But the code does not
really discriminate among them; in effect, it treats the whole
linked list as a single data structure, and plucks out a
specific field from all the different instances. Another piece
of code could do a similar computation using the field
ptr–>f2; this would be unrelated to the first computation,
because it is using a separate field, even though it is travers-
ing the same linked list.

Similar considerations apply to array global variables.
The reason is that array cells are typically accessed in a
dynamic manner, using other variables as an index.
Accordingly, when performing fine-grain definition-use
analysis, it would be wrong to treat array cells as indepen-
dent. Instead, the cells should be collapsed and the whole
array should be treated as a single global entity. This still
holds even if each cell of the array is itself a structure.

Returning to the linked-list example, the above code seg-
ment actually refers to two fields of struct_type_2: the inte-
ger field f1 and the pointer field next. As a result, a similar
code fragment using ptr–>f2 instead of ptr–>f1 would be
coupled to this one by virtue of their shared use of ptr–>
next. However, this is a weak coupling because ptr–>next
is only used, and not defined. The code would have a
stronger coupling with other code that actually defined
ptr–>next, which is appropriate, because such code really
changes the structure of the linked list being traversed.

3.4. Handling pointers

When structures appear in arrays or linked lists, they are
typically accessed via pointers (as shown above). Thus if
pointer ptr points to an instance of struct_type_2, we might
see a statement of the form

ptr–>f1 ¼ 1;

The question is precisely how to interpret this in terms of
definitions and uses. The problem is that this simple state-
ment involves no fewer than three variables: the pointer
ptr, the structure s to which it points, and the field f1 within
that structure.

When using coarse-grain analysis of complete struc-
tures, this assignment is an assignment to the structure s.
However, if the pointer ptr is itself a global variable, it
may be more convenient to use it as a representative of
all the instances of struct_type_2 to which it might point.
With this interpretation, we would say that the above state-
ment is an assignment to ptr. In effect, this was the
approach employed by Yu et al. in their analysis (Yu
et al., 2004). Note, however, that the identification of s with
ptr may be problematic, as the application may contain
other means of accessing structures of type struct_type_2
apart from global pointer ptr. When basing the analysis
on ptr, such additional references will be missed. This
indeed happens in the Linux case study, as discussed in
Section 4.4.

When using fine-grain analysis of fields, the picture is
different. The above statement actually translates into
two distinct accesses: First, there is a use of the (derefer-
enced) pointer ptr. Second, there is a definition of the inte-
ger field s.f1. In principle this makes it easier to analyze all
uses and definitions of each field, independent of how they
are referenced.

A somewhat subtle situation arises when a field is a
pointer to the same type of data structure, as in the linked
list example shown above. When such a field exists, we
might find statements of the form

ptr–>next–>f1 ¼ 2;

Based on our previous considerations of collapsing
instances of accesses to the same field, this should also be
interpreted as a definition of field s.f1, despite the extra
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level of indirection. The indirection just adds a use of field
s.next.
4. Common coupling and the Linux case study

4.1. Previous work

A case study in which common coupling has been inves-
tigated concerns the Linux kernel. Linux is a popular
object of study due to its prominence and the availability
of its source code for all versions since 1994 (Bowman
et al., 1999; Tran et al., 2000; Schach et al., 2002; Albinet
et al., 2004; Paulson et al., 2004; Yu et al., 2004). Regard-
ing common coupling, it was shown that whereas the size
of the Linux code base grows linearly with version number,
the degree of common coupling grows exponentially
(Schach et al., 2002). This agrees with an independent study
of the architecture of Linux, which concludes that it has
many more dependencies than it should (Bowman et al.,
1999), and a study showing that open-source software is
not necessarily more modular than closed source (Paulson
et al., 2004).

A subsequent and more detailed study showed that not
only is there significant common coupling, but that much
of it is of the especially insidious category 5, causing vul-
nerability of the kernel to modifications in non-kernel
modules (Yu et al., 2004). This is especially troubling in
the context of an operating system, because it prevents
the use of hardware support for protection. Practically all
processors on the market have at least two protection lev-
els: user and kernel. This allows the operating system to
protect its data structures from being manipulated by user
code. But many have more than two levels. For example,
the popular Intel Pentium processors have four levels: a
user mode, and three protected modes with increasing
levels of protection (IA-32 Intel Architecture Software
Developer’s Manual, 2004). This is intended to be used
to support layering within the operating system. For exam-
ple, the kernel can use the most protected mode, and thus
be shielded against faults that might be introduced by
device drivers that run with a lower level of protection.
But when global variables are used, all parts of the operat-
ing system must run at the same protection level, and the
kernel data is left vulnerable. And indeed, Linux uses only
a single protection mode for all operating system code.

An analysis of version 2.4.20 of the Linux operating sys-
tem by Yu et al. (2004) has found 99 global variables, of
which 4 are of the undesirable category 3, and no fewer
than 20 are from the even worse category 5. In particular,
the variable current stood out as especially problematic; it
was defined and used by 12 kernel modules, used by an
additional 6 kernel modules, and also defined and/or used
by an astounding 1071 non-kernel modules.3 These figures
3 In this study and in ours modules are taken as equivalent to C source
files.
made a dominant contribution to the finding that 62–63%
of all occurrences of global variables in Linux are category
5.

Fig. 4 depicts the definitions and uses of current accord-
ing to Yu et al. (2004). module_name (n, m) denotes that
the module in question contains n definitions and m uses
of global variable current. The dashed lines separate the
12 kernel modules with both definitions and uses of current
from the 6 kernel modules with just uses.

The methodology used to derive these results was as
follows. First, all lines in the Linux source code in which
current occurs were extracted. These were classified as def-
initions if current appeared to the left of an assignment
operator, and uses otherwise, that is, coarse-grain defini-
tion-use analysis was performed. Then definitions and uses
of current in all the modules were counted. The 26 files in
the kernel subdirectory were identified as being the kernel
modules, and all the rest as non-kernel (Linux 2.4.20 has
about 11,000 files).

4.2. A closer look at current

In our case study we take a closer look at current. In
particular, we incorporate operating systems knowledge
into the analysis, and make the following observation:
current is not a simple global variable. In fact, it has two
independent roles. First, it serves to identify the currently
running process. Second, it is a pointer to a structure con-
taining many fields used to describe this process.

In Linux, as in other variants of Unix, data about each
process are maintained in a process descriptor. In Linux,
this is a structure called task_struct. In some versions of
Unix, the kernel contains a hardcoded table of such struc-
tures. However, this limits the number of processes that
can be created. In Linux, task structures are allocated
dynamically together with the kernel stacks (Bovet and
Cesati, 2001). Each process has a unique area in memory,
8 KB in size, that contains its task structure and its kernel
stack. The address of this memory block is used by the ker-
nel to identify this process, in place of the conventionally
used process identifier, or pid (but a pid is still maintained
for use in the programming API, e.g., the fork and signal
system calls).

Because the kernel most often deals with the currently
running process, the address of the memory block describ-
ing this process is made available using current. For effi-
ciency reasons this is not a normal variable in memory,
but rather a macro that returns the contents of a specific
register (Bovet and Cesati, 2001). As a further optimiza-
tion, Linux does not waste a general-purpose register for
this; instead, it masks the low-order 13 bits of the stack
pointer. This works because, when kernel code is running,
the stack pointer points into the kernel stack of the cur-
rently running process, which resides in the same 8 KB
memory block as the process descriptor. Thus current
(the pointer) is actually never explicitly defined! Instead,
it is implicitly defined when the stack pointer is defined
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as part of a context switch (in the switch_to macro) (Bovet
and Cesati, 2001). So, from the viewpoint of fine-grained
definition–use analysis, current itself is not category 5,
but rather category 2; it is defined in one place, and used
extensively both in the kernel and in other modules.

Lines of source code in which current appears to the left
of an assignment are not definitions of current. Rather,
they are definitions of fields of the process descriptor to
which current points. The original study by Yu et al.
implicitly considered the whole process descriptor as a sin-
gle entity, so a definition of any field was considered to be a
definition of the process descriptor. But an alternative
approach is to consider the fields individually, as we do
in this paper. This is motivated by the fact that the process
descriptor is actually a somewhat disorganized assembly of
different pieces of data, used for different purposes. In prin-
ciple, it may be that each of these fields is actually well
behaved, and belongs to categories 1, 2, or 4 (as explained
in Section 3.2). This would imply that common coupling in
the Linux system is not as problematic as suggested by the
results of Yu et al. (2004).

4.3. The fields of task_struct

The process descriptor structure in Linux is rather com-
plex. Some of its fields are scalars. Others are structures,
pointers to structures, or arrays. The question is if and
when to fragment the structure into its constituent scalars.
We decided to perform such fragmentation, following the
approach outlined in Section 3.2.

Based on the arguments presented above, independent
scalar fields should clearly be considered as distinct global
variables. An example is current–>pid, the process identi-
fier used in the programming API. However, there are
cases where several such fields are actually related. For
example, there are several different fields that express
nuances of user identification for the purpose of granting
permissions: current–>uid, current–>euid, current–>suid,
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current–>fsuid, and similarly for groups. In principle these
could have been grouped into a ‘‘uid’’ structure instead of
cluttering task_struct, but they were not. The problem with
grouping them when performing the definition-use analysis
is that it requires an understanding of the semantics of each
field, and the relationships between them; furthermore, it
may be somewhat subjective. We therefore decided to take
the more formal approach, and treat all scalar fields as dis-
tinct global variables, even where there seemed to be some
relationships between them.

This then leads to the notion that fields that actually are

structures should also be decomposed, and their fields
should also be regarded as distinct global variables. More-
over, this should also apply to fields in structures that are
pointed to by fields of current, rather than being part of
the task_struct structure directly. This can go on for several
levels.

The only case where pointers to structures were not fol-
lowed and fragmented was when they point to other
instances of task_struct (see Section 3.4). There are quite
a few such pointers, used for two functions: keeping track
of the family relations among processes (pointers to the
parent, first child, and sibling processes), and maintaining
lists of processes (such as the runqueue or processes waiting
for an event). Subfields accessed via such pointers were
identified with the fields of current itself.

Arrays, as distinct from structures, were not decom-
posed, but were treated as a single global entity. The reason
is that array cells are typically accessed in a dynamic
manner, using other variables as an index. In other words,
array cells are more similar to instances of a data structure
than to independent data structures. Accordingly, when
performing fine-grain definition-use analysis, it would be
wrong to treat array cells as independent. Instead, when-
ever a field is an array, the whole array should be collapsed
and treated as a single global entity. This still holds even if
each cell of the array is itself a structure – which is decom-
posed into its subfields, as described above.

4.4. Miscategorization caused by aliasing

Another issue that has surfaced is aliasing, which may
be considered as a variant of clandestine common coupling
(Schach et al., 2003). As before, let ptr be a pointer to a
variable of type struct_type. Assume further that ptr itself
is a global variable (like current).The statement

newptr ¼ ptr;

creates an alias for ptr. Either one of them can now be used
to access the fields of the structure to which ptr is pointing.

In particular, when the alias is used to define and use
fields or subfields of variables of type struct_type, it
becomes harder to detect instances of common coupling.
These fields and subfields are global variables, but can
now be accessed using different names!

In the original analysis of Linux by Yu et al., aliases of
global variables were ignored. Consequently, none of the
accesses made using aliases were considered, so there are
potentially many more definitions and uses that were not
identified (Orso et al., 2001). This is problematic because
such missing information can lead to misclassification of
global variables.

A specific example we found in Linux is current–>state,
which we originally categorized as a category-1 field,
because it is only defined but not used in the kernel (it is
also defined in non-kernel code, but the categorization
allows this as it focuses on the kernel dependencies). But
in reality it is used in the kernel: the scheduler creates an
alias of current called prev in anticipation of switching to
a new process, and then uses the value of prev–>state in
a switch statement. Therefore field state should actually
be category 5, as it is indeed categorized after taking aliases
into account.

Aliasing also partially accounts for the large number of
fields that have only a single occurrence in the whole sys-
tem, or seem to never be defined. They actually have more
occurrences, but those are achieved using aliases rather
than using current. For example, the field current–> did_exec
appears only once in the whole system, where it is defined,
but seems never to be used. But in fact it is used in the form
p–>did_exec, after p is aliased to current.

Focusing on the use of current in Linux, we find that
there is an additional special case related to aliasing. When
a new process is created, its task_struct is initialized as part
of the fork system call. At this time current is still pointing
to the parent process. Thus, many fields of the new process
seem never to be defined, because these definitions happen
before current is made to point at this instance of a process
descriptor. Likewise, some definitions and uses are per-
formed by routines that loop over all processes, regardless
of which process is the currently running one. We did not
count such accesses, because our analysis was specifically
based on those source-code statements that involve current
itself. Therefore our results may be conservative, because
additional definitions and uses may involve additional
modules, and propel the affected fields to higher (and
worse) coupling categories.

A detailed description of the effect of aliasing has been
written in a separate paper (Schach et al., in press). The
results reported here include all occurrences of current,
including those using direct aliases. However, they do not
include possible accesses to fields that were passed by refer-
ence to other functions, thereby effectively creating addi-
tional indirect aliases.

4.5. Classifying operations as definitions and uses

When performing fine-grain definition-use analysis, it is
too simplistic to categorize occurrences of global variables
as only simple definitions or simple uses. Real complex sys-
tems use various language constructs which imply addi-
tional categories. The following is a list of the C-based
categories that we found in Linux (all the examples are
actual code from the Linux 2.4.20 kernel).
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Simple definition: This is a simple assignment, such as to
field processor in

current–>processor ¼ 0;

Simple use: Similarly, this is a straightforward utilization
of the current value of a variable. Two examples are the
following statements using the field current–>pid:

q–>info:si pid ¼ current–>pid;

ifðcurrent–>pid ! ¼ 1Þf. . .g

Combined definition and use: This is using the shorthand
available in C, as in

current–>link countþþ;

current–>flags j ¼ PF SIGNALED;

For the purpose of categorizing common coupling, such
statements need to be counted twice, both as a definition
and as a use. But when counting the number of occur-
rences of a global variable, they are counted only
once.Atomic operation: Linux supports an atomic com-
bination of definition and use, as in

atomic incð&current–>files–>countÞ;

In addition, lock and unlock operations are actually
atomic operations that both use and potentially modify
their parameter, as in

read lockð&current�>fs�>lockÞ;

Such atomic operations were therefore also counted
twice, as above.
Passing by value: This is equivalent to a use, because
only the variable’s value is passed to the function.
A special case occurs if the field in question is itself a
pointer. In this case, passing the pointer by value is
equivalent to passing the pointed-to structure by refer-
ence. From a maintenance viewpoint, the possibility of
defining elements of the structure therefore dictates that
this be classified as passing by reference and not passing
by value.
Passing by reference: In this case, a variable may be
modified by the called function, so this is potentially
both a definition and a use.
A special case occurs when global variable current is
passed as a parameter to a function. This seems strange,
as current is global anyway. The answer is that current
doubles as an identifier for the currently running pro-
cess, and as such is sometimes passed to functions that
accept a process descriptor as an argument, for example

send sigðSIGKILL; current; 0Þ;
Such cases are counted as a passing by value despite the
fact that current is also a pointer to the whole task_-
struct structure.
Pointer dereference: Each time a pointer is dereferenced
its value is actually used. Therefore statements such as

current–>fs–>altrootmnt ¼ mnt;
actually represent two uses (of current itself and of the
field fs) and a definition (of the subfield altrootmnt).
Execution: This is using the facility to define a variable
that points to a function, and then calling that function.
For example:

current–>exec domain–>handlerðsegment; regpÞ;

We interpret this as using the value of the variable.
Sizeof: A special case is sizeof, which looks like a func-
tion call but behaves more like an operator, for example:

charcorename½6þ sizeofðcurrent–>commÞ þ 10�;

However, as this is resolved at compile time and uses
only the type of the variable in question, we ignore such
instances in our definition-use analysis.
5. Results of the Linux re-categorization case study

To assess the impact of the considerations described in
the previous sections, we performed a complete re-catego-
rization of common coupling as related to current in Linux.
5.1. Technicalities

The version used was Linux 2.4.20, as in the study by Yu
et al. (2004), so that our fine-grain results could be com-
pared to those of the earlier coarse-grained study.

The analysis started with all source code lines that
include the identifier current. These include both .c and .h
files. Note that .h files are considered as independent mod-
ules. Therefore, macros defined in .h files count as defini-
tions and uses in that file, and not in the .c files that
include the .h file.

The kernel modules were identified as the 26 .c files in
the kernel directory, again as done in the study by Yu
et al. Files in the arch/*/kernel directories were not consid-
ered to be part of the kernel. The reason for this decision is
that, from a maintenance point of view, we define the ker-
nel as the heart of the system that is crucial for any instal-
lation. Accordingly, architecture-specific aspects of the
kernel are excluded. Alternative definitions of the kernel
are discussed in Section 5.3.

Each occurrence of the fields of current was classified
manually into one of the definition-use classes of Section
4.5. This was then checked by another person and any dif-
ferences were reconciled. These classifications were then
automatically analyzed by Perl scripts to categorize the
fields into the five categories of Section 2.2.

We did not consider the occurrences of global variables
in assembler code, but rather set them aside until we have
done the necessary research into the nature of common
coupling between a second-generation language (assem-
bler) and a third-generation language (C). The only conse-
quence of our not analyzing the assembler code is that we
may have slightly undercounted the number of occurrences
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of common coupling (current appears in assembly instruc-
tions only 31 times).
5.2. Results

In the remainder of this paper, the term ‘‘fields’’ also
includes all subfields of current, as explained in Section
3.2. Categorizing the subfields of current according to the
procedure outlined above leads to the results shown in
Table 1. The first obvious result is that a refinement of
the original categorization is needed. As indicated in the
table, we have added another category, namely,

Category 0: Global variables that are neither defined nor
used in the kernel.

because this seems to be the case for many subfields of cur-
rent. In addition to the 247 fields in Table 1, there were no
fewer than 80 fields for which we identified uses but did not
identify any definitions. Of these, 17 were used in the ker-
nel, and the rest were not. Some of these fields received val-
ues during initialization in the fork routine; a prime
example is current–>pid, which is used 22 times in the ker-
nel and 765 times in non-kernel modules. In fact, the whole
of task_struct is initialized in fork by simply copying the
parent structure; in addition, many fields are initialized
individually, including 15 of the 80 fields cited above. Other
fields most probably received values from some other code
that did not involve current directly or through an alias.
This includes various actions that are typically unrelated
to the currently running process, such as handling I/O
operations (for file access or memory management), send-
ing signals, and making scheduling decisions.

Using the extended categorization, we see that some
61% of the fields are in category 0, that is, not accessed
by the kernel. This high percentage may mean that we
are still missing additional definitions or uses that are not
implemented using current or its aliases; indeed, a simple
check based on analyzing the initialization in the fork sys-
tem call reveals that including those definitions reduces
the fraction of category 0 fields to 56%. It may also mean
that our definition of ‘‘kernel’’ is lacking – an issue that
we address again below in Section 5.3. On the other hand,
the vast majority (109 of 152, or 72%) of these fields are
actually subfields of the thread_struct structure that is
embedded in task_struct. This structure is used to encapsu-
Table 1
Results of categorizing fields of current

Category 0 152 (61.5%)
Category 1 5 (2.0%)
Category 2 27 (10.9%)
Category 3 3 (1.2%)
Category 4 7 (2.8%)
Category 5 53 (21.5%)

Total 247 (100%)
late architecture-specific state of the processor, and there-
fore is typically used by architecture-specific code, and
not by kernel code. It is therefore reasonable to disregard
these fields when discussing the coupling of the kernel to
non-kernel modules.

Ignoring all the category 0 fields, we find that the major-
ity of the other fields (53 of 95, or 56%) belong to the prob-
lematic category 5. This is much higher than the results
obtained by Yu et al., who found that only 20% of the glo-
bal variables were in category 5. Note, however, that these
results are not directly comparable, because we are count-
ing fields of current whereas Yu et al. were counting inde-
pendent global variables (of which current was one).

In an effort to understand the significance of the above
results, we note that some of the fields are locks or counters
that are used atomically. These fields are explicitly designed
to be accessed and modified by multiple modules, and their
usage reflects this. Could it be that they are the source of
the many category 5 fields? Upon inspection, it was found
that only 15 fields are of this type, and only 8 of them were
category 5, so the above results are not largely influenced
by them.

Table 2 shows the breakdown of occurrences of fields of
current of different categories in kernel and non-kernel
modules. Here, occurrences that are both a definition and
a use are counted only once. The results are that accesses
to category-5 fields dominate the use of current’s fields in
both the kernel and non-kernel code. In the kernel, the sec-
ond most common type of access is to a category-2 field. In
non-kernel code, the second most common is category 0.
Note that there are nearly 3 times as many different cate-
gory-0 fields as category-5 fields, but together they occur
just over a third as many times as category-5 fields.

5.3. What is the kernel?

The above results are based on the definition used by Yu
et al. (2004), where the kernel is defined to be the kernel
subdirectory of the Linux distribution. But code from other
subdirectories is often also considered part of the Linux
‘‘core kernel.’’ So we need a definition that specifically
identifies the core kernel, that is, those parts of the kernel
that are the most fundamental and used in all installations.
We have come up with three possible alternatives for such a
definition.
Table 2
Results of analyzing individual occurrences of fields of current

Kernel Non-kernel

Category 0 0 (0.0%) 1863 (25.0%)
Category 1 6 (1.0%) 18 (0.2%)
Category 2 96 (15.2%) 197 (2.6%)
Category 3 13 (2.1%) 10 (0.1%)
Category 4 16 (2.5%) 166 (2.2%)
Category 5 499 (79.2%) 5208 (69.8%)

Total 630 (100%) 7462 (100%)
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The first alternative is to use the distribution makefiles
to find those modules that are always compiled, in all ker-
nel configurations. This led to a set of 52 files (in addition
to the 26 in kernel), which are listed in the Appendix. Some
judgment has been applied in setting up this list, for exam-
ple, modules related to networking were excluded as a sys-
tem could in principle be stand-alone. On the other hand
many file system modules have been included, because
the file system serves as the main abstraction for naming
and access to all hardware devices, and not only as the
implementation of the file abstraction.

Another alternative is architecture-based, and includes
all the files compiled for the simplest possible Intel-based
i386 platform. To find this list of files, we simply created
such a kernel build, and extracted the list of files that were
used. The selected configuration was typical of a modern
desktop, including Ethernet and USB. The list ended up
containing 342 source files, and an additional 494 header
files. The source files are also listed in the Appendix.

The third alternative is much simpler, and is based on
exclusion rather than inclusion. It considers all the code
to be the kernel except for two obvious subdirectories: arch,
which contains architecture-specific code, and drivers,
which contains device drivers.

Note that except in the i386 version .h files are not
included in the kernel. Firstly, these files reside in the include
directory, not in the kernel directory. Moreover, the same .h
file may be included by multiple files, some of which are in
the kernel while others are not. Therefore there is no
straightforward way to associate .h files with the kernel.

The results of classifying the fields of current using these
three alternatives are shown in Table 3, and compared with
the original definition used by Yu et al. (2004). One obvi-
ous result is that as we include more files in our definition
Table 3
Categorization of fields of current using different definitions of what
constitutes a kernel

Yu Makefile i386 Exclude

Category 0 152 (61.5%) 134 (54.3%) 98 (39.7%) 93 (37.7%)
Category 1 5 (2.0%) 7 (2.8%) 16 (6.5%) 17 (6.9%)
Category 2 27 (10.9%) 37 (15.0%) 52 (21.1%) 44 (17.8%)
Category 3 3 (1.2%) 17 (6.9%) 20 (8.1%) 26 (10.5%)
Category 4 7 (2.8%) 6 (2.4%) 3 (1.2%) 6 (2.4%)
Category 5 53 (21.5%) 46 (18.6%) 58 (23.5%) 61 (24.7%)

Table 4
Results of analyzing individual occurrences of fields of current using different

Yu Makefile

Kernel (%) Non-k (%) Kernel (%) Non-k (%

Category 0 0.0 25.0 0.0 21.8
Category 1 1.0 0.2 0.7 0.3
Category 2 15.2 2.6 14.8 3.2
Category 3 2.1 0.1 14.8 1.4
Category 4 2.5 2.2 0.7 3.9
Category 5 79.2 69.8 69.0 69.5

Total 630 7462 1206 6886
of the kernel, fewer fields are classified as belonging to
category 0. These fields migrate to the other categories,
mainly to categories 1, 2, and 3. However, the overall pic-
ture does not change very much, and the largest non-
category-0 category by far is always category 5. The
fraction of non-category-0 fields that are classified in the
‘‘bad’’ categories of 3 and 5 is also relatively stable, and
stays in the range of 52–59%.

When looking at the fraction of occurrences of each cat-
egory (Table 4), we again see a similar picture for all four
definitions of the kernel. Between 63 and 79% of the occur-
rences are of category-5 fields. When using alternatives that
define a larger kernel, the main growth occurs in occur-
rences of category-3 fields. In the extreme case, namely,
defining the kernel as all subdirectories except the arch
and drivers subdirectories, the fraction of occurrences of
category-3 fields is an order of magnitude larger than for
Yu et al.’s original definition of the kernel, and twice as
large as the fraction of occurrences of category-2 fields.
This indicates that a large part of the problem is indeed
coupling between modules in these two subdirectories
and the other subdirectories.
5.4. Threats to the validity of the Linux case study

A major threat to the validity of the results of the Linux
case study reported above is that they are based on a lexical
analysis of the code, rooted at uses of current. This does
not allow for a full and precise identification of all data
flows from one module to another. In particular, we do
not follow the passing of current and its fields by value,
or accesses using pre-processor macros. Moreover, we
completely miss those fields and subfields of task_struct
that are simply not accessed via current at all, and ignore
those that are used but not defined. A semantic analysis
using a compiler front-end is needed to correct these omis-
sions. We are considering performing such an analysis, and
comparing the results, to assess the severity of this method-
ological issue. Such an analysis could identify new fields in
all the different categories, leading to changes in the
observed distribution of fields in the different categories.
However, regarding the fields that we have already
analyzed, such future analysis can only increase the
coupling between modules. Therefore, our results may be
definitions of what constitutes a kernel

i386 Exclude

) Kernel (%) Non-k (%) Kernel (%) Non-k (%)

0.0 17.4 0.0 17.6
1.2 0.9 1.3 0.6

15.1 3.0 11.8 2.8
15.5 1.9 23.1 0.6
0.5 4.3 0.9 1.9

67.7 72.5 62.9 76.5

1821 6271 2420 5672
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somewhat conservative, and the actual degree of coupling
may be even higher, possibly even leading to a re-categori-
zation of certain fields into worse categories.

Another threat to the validity of these results is that they
obviously depend on the definition of what constitutes the
Linux kernel. We compared four definitions, two based on
the subdirectory structure and two based on the kernel
makefiles. All four led to qualitatively similar results. But
it might be that some refactoring can significantly reduce
the coupling among any of these definitions of the kernel
and other modules (Tran et al., 2000).

A third potential threat to the validity of the results of
the Linux case study is that they pertain to only the Linux
system. It may be that such a complex system, written in a
non-object-oriented language, simply requires such pat-
terns of global variables to be used. It may be that the
resulting code is hard to maintain, but that by itself does
not necessarily imply a low quality.

To achieve an absolute scale, comparison with other
similar software systems is required. Yu et al. have in fact
conducted such a study, comparing Linux to several ver-
sions of the BSD Unix operating system. This seems an
appropriate comparison because the basic functionality of
Linux and BSD are similar, but the BSD line has had a
much more disciplined development history. The results
of the study show that BSD has an order of magnitude less
common coupling than Linux: 900–1600 occurrences of
global variables vs. about 15,000 (Yu et al., 2006).
Although striking, it should be remembered that the func-
tionality of the different systems is not identical: Linux con-
tains support for many more platforms and hardware
devices, and therefore has many more device drivers, which
may inflate the coupling numbers.

5.5. Discussion of the case study

The result of our re-categorization of global variables
with regard to current in Linux is to uphold the concern
raised by Yu et al. regarding the large number of cate-
gory-5 global variables in Linux. We have shown that, even
when global data structures are reduced to their constituent
fields, there are many individual fields that are category 5,
and, moreover, they receive a disproportionally large frac-
tion of the accesses. As such, they lead to vulnerabilities of
the kernel and dependencies on non-kernel code. In partic-
ular, we found a strong coupling with the arch and drivers
subdirectories, indicating that

1. The kernel is exposed to manipulation by peripheral
code such as device drivers and

2. There is a lack of a well-defined interface between the gen-
eric part of the system and the architecture-specific parts.

Examples that this coupling is a real problem include the
following. The field current–>counter is the main mecha-
nism by which the scheduler assigns priority and keeps
track of CPU usage by a process. It should therefore be
defined by only the scheduler and the timer. In actuality,
it is also defined by two other kernel modules, by a host
of architecture-specific kernel extensions (to reduce prior-
ity), and by several device drivers, presumably also to
reduce priority. In fact, the scheduler and timer access
current–>counter only via an alias.

The field current–>session is used by the system to keep
track of session information and process relationships, so it
should also be defined by only the kernel. However, we
found that it is also directly set once in file system code,
and once in a device driver (and indirectly, via an alias,
another few times). In fact, there were 19 fields that are
defined only once or twice in non-kernel modules, while
being used up to 64 times. Eliminating these definitions
would change their classification from category 5 to cate-
gory 2.

A worrying example is that several uid-related fields are
also category 5 (the uid is the user identifier, and is used to
control access to private information). They are naturally
set in the kernel, but are manipulated also by file-system
code. For example, current–>fsuid is temporarily set to be
0 (the root user ID) in one place so as to obtain a privileged
port. In principle, any new module may set these variables
and introduce serious security risks.

These examples show that common coupling is more
than a software engineering issue related to maintainability.
As stated earlier in this section, common coupling also
reflects a real vulnerability of the kernel, the most crucial
code at the heart of the system, to manipulation by periph-
eral code-like device drivers, which are known to be fault-
prone and are relatively unregulated (Chou et al., 2001).
This demonstrates the problems that stem from a mono-
lithic design based on direct access to global variables. A
much safer design would be to use layers based on hardware
protection, where peripheral code can call only functions
exported by more protected code. For example, drivers
should not manipulate scheduler data – they should call a
function to request a reduction in priority. And there should
simply be no interface that allows peripheral code to modify
the uid. Such design ideas are not at all innovative, and have
been known since the very first multi-tasking operating sys-
tems projects (Dijkstra, 1968; Schroeder et al., 1977).

6. Summary, conclusions, and future work

The degree of common coupling found among software
modules may depend on the granularity of the analysis –
whether we are considering the sharing of complete data
structures or the sharing of their constituent fields. In par-
ticular, coarse-grained analysis may cause false coupling,
where the syntactic coupling of fields in the same structure
leads to apparent coupling between modules that in actual-
ity use only distinct fields.

In fine-grain analysis we focus on the fields. We claim that
this can potentially lead to a more accurate characterization
of sharing patterns than using complete data structures. We
further claim that the way to perform the fine-grained anal-
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ysis is to collapse runtime instances of global data structures
that have the same type. Our main contribution is the devel-
opment of a technique for fine-grain analysis of common
coupling in kernel-based software. We have shown by means
of a case study that the technique can be used in practice.

Previous work on the common coupling in the Linux
system used a coarse granularity, and found significant
coupling between the kernel and more peripheral software
modules. We have repeated this work using our fine-grain
technique at the level of individual fields. The main result
found is that significant coupling exists at this level as well,
thereby alleviating the concern that those previous results
were based on false coupling. At the same time, our results
augment the concern regarding the long-term maintainabil-
ity of Linux.

In future work we plan to extend our study in three
directions. First, there is much more to learn about cou-
pling in general. The most prominent example is to follow
the effect of passing global variables by reference from one
module to another. This creates a form of alias that we did
not consider in the present study, and might increase the
coupling significantly. Likewise, the use of macros to access
global variables needs to be taken into account.

Second, we wish to further improve our understanding of
coupling in the specific case of the Linux system. One aspect
of this is to actually tabulate coupling that arises from pass-
ing by reference, as suggested above. Another is to extend the
directory files

init/ do_mounts.c main.c

fs/ open.c read_writ
ioctl.c readdir.c
block_dev.c char_dev
dcache.c inode.c
attr.c file.c
iobuf.c

ipc/ util.c

kernel/ acct.c capability
exec_domain.c exit.c
itimer.c kmod.c
panic.c pm.c
resource.c sched.c
sys.c sysctl.c
uid16.c user.c

lib/ errno.c ctype.c
brlock.c cmdline.c
dump_stack.c

mm/ bootmem.c filemap.c
mmap.c mprotect
oom_kill.c page_allo
slab.c swap.c
vmalloc.c vmscan.c
analysis to all references to task_struct (not just those made
using current), and furthermore, to all other shared data
structures. A third is to make more detailed comparisons
with other systems, such as BSD Unix. This will answer
the question of whether our results for fine-grain coupling
are general or unique to the Linux system.

Third, a different line of research is to investigate alterna-
tives to the massive use of global variables, in the interest of
making operating systems more robust, and reducing the
potential vulnerabilities to peripheral code. This harks back
to studies of kernel structure in the Multics system (Schroe-
der et al., 1977), and can also exploit studies of the architec-
ture and inter-dependencies of Linux (Bowman et al., 1999;
Tran et al., 2000). It is obviously related to the software
engineering study of partitioning (and re-partitioning) sys-
tems into modules (Parnas, 1972; Schwanke, 1991).

Appendix. Selection of kernel modules

In addition to defining the kernel according to the sub-
directory structure of the code, we considered two other
ways to identify the core modules based on the kernel’s
makefiles.

One alternative definition of the ‘‘kernel’’ is based on
files that are compiled in all kernel configurations. Using
this consideration, we suggest that the kernel comprises
the following files (this is called the ‘‘makefile’’ version):
version.c

e.c stat.c fcntl.c
exec.c devices.c

.c namespace.c namei.c
bad_inode.c super.c
file_table.c buffer.c

.c context.c dma.c
fork.c info.c
ksyms.c module.c
printk.c ptrace.c
signal.c softirq.c
time.c timer.c

string.c vsprintf.c
bust_spinlocks.c rbtree.c

memory.c mlock.c
.c mremap.c numa.c
c.c page_io.c shmem.c

swap_state.c swapfile.c
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Another alternative is based on an actual compilation of
a basic configuration suitable for an Intel-based desktop.
directory files

init/ do_mounts.c main.c

drivers/block/ ll_rw_blk.c blkpg.c
floppy.c

drivers/cdrom/ cdrom.c

drivers/char/ mem.c tty_io.c
raw.c pty.c
vt.c vc_screen.c
console.c selection.c
defkeymap.c pc_keyb.c

drivers/ide/ ide.c ide-features.c
ide-adma.c ide-dma.c
rz1000.c ide-proc.c
ide-disk.c ide-cd.c

drivers/net/e1000/ e1000_main.c e1000_hw.c
e1000_proc.c

drivers/net/ eepro100.c mii.c
net_init.c loopback.c

drivers/pci/ pci.c quirks.c
proc.c setup-res.c

drivers/scsi/ scsi.c hosts.c
scsicam.c scsi_proc.c
scsi_queue.c scsi_lib.c
scsi_scan.c scsi_syms.c

drivers/sound/ sound_core.c sound_firmwa
es1371.c

drivers/usb/storage/ scsiglue.c protocol.c
initializers.c

drivers/usb/ usb.c usb-debug.c
uhci.c

drivers/video/ vgacon.c

fs/ open.c read_write.c
ioctl.c readdir.c
select.c devices.c
fifo.c pipe.c
dcache.c inode.c
attr.c file.c
iobuf.c dnotify.c
noquot.c binfmt_aout.c

fs/devpts/ root.c inode.c

fs/ext2/ balloc.c bitmap.c
fsync.c ialloc.c
namei.c super.c
Doing this led to the following list of files (called the
‘‘i386’’ version):
version.c

genhd.c elevator.c

n_tty.c tty_ioctl.c
misc.c random.c
consolemap.c consolemap_deftbl.c
serial.c keyboard.c
sysrq.c

ide-taskfile.c cmd640.c
ide-pci.c piix.c
ide-probe.c ide-geometry.c

e1000_ethtool.c e1000_param.c

Space.c setup.c
auto_irq.c

compat.c names.c

scsi_ioctl.c constants.c
scsi_error.c scsi_obsolete.c
scsi_merge.c scsi_dma.c

re.c i810_audio.c ac97_codec.c

transport.c usb.c

hub.c hcd.c

stat.c fcntl.c
exec.c locks.c
block_dev.c char_dev.c
namespace.c namei.c
bad_inode.c super.c
file_table.c buffer.c
filesystems.c seq_file.c
binfmt_script.c

dir.c file.c
inode.c ioctl.c
symlink.c



Appendix (continued )

directory files

fs/isofs/ namei.c inode.c dir.c util.c
rock.c

fs/lockd/ clntlock.c clntproc.c host.c svc.c
svclock.c svcshare.c svcproc.c svcsubs.c
mon.c xdr.c lockd_syms.c

fs/nfs/ dir.c file.c flushd.c inode.c
nfs2xdr.c pagelist.c proc.c read.c
symlink.c unlink.c write.c nfsroot.c
mount_clnt.c

fs/partitions/ check.c msdos.c

fs/proc/ inode.c root.c base.c generic.c
array.c kmsg.c proc_tty.c proc_misc.c
kcore.c

fs/ramfs/ inode.c

ipc/ util.c msg.c sem.c shm.c

kernel/ acct.c capability.c context.c dma.c
exec_domain.c exit.c fork.c info.c
itimer.c kmod.c module.c panic.c
printk.c ptrace.c resource.c sched.c
signal.c softirq.c sys.c sysctl.c
time.c timer.c uid16.c user.c

lib/ errno.c ctype.c string.c vsprintf.c
brlock.c cmdline.c bust_spinlocks.c rbtree.c
dump_stack.c rwsem-spinlock.c dec_and_lock.c

mm/ memory.c mmap.c filemap.c mprotect.c
mlock.c mremap.c vmalloc.c slab.c
bootmem.c swap.c vmscan.c page_io.c
page_alloc.c swap_state.c swapfile.c numa.c
oom_kill.c shmem.c

net/ socket.c sysctl_net.c

net/802/ p8023.c sysctl_net_802.c

net/core/ sock.c skbuff.c iovec.c datagram.c

scm.c sysctl_net_core.c dev.c dev_mcast.c
dst.c neighbour.c rtnetlink.c utils.c

net/ethernet/ eth.c sysctl_net_ether.c

net/ipv4/ utils.c route.c inetpeer.c proc.c
protocol.c ip_input.c ip_fragment.c ip_forward.c
ip_options.c ip_output.c ip_sockglue.c tcp.c
tcp_input.c tcp_output.c tcp_timer.c tcp_ipv4.c
tcp_minisocks.c tcp_diag.c raw.c udp.c
arp.c icmp.c devinet.c af_inet.c
igmp.c sysctl_net_ipv4.c fib_frontend.c fib_semantics.c
fib_hash.c ipconfig.c

(contiuned on next page)
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directory files

net/netlink/ af_netlink.c

net/packet/ af_packet.c
net/sched/ sch_generic.c

net/sunrpc/ clnt.c xprt.c sched.c auth.c
auth_null.c auth_unix.c svc.c svcsock.c
svcauth.c pmap_clnt.c timer.c xdr.c
sunrpc_syms.c stats.c sysctl.c

net/unix/ af_unix.c garbage.c sysctl_net_unix.c

arch/i386/kernel/ process.c semaphore.c signal.c entry.S
traps.c irq.c vm86.c ptrace.c
i8259.c ioport.c ldt.c setup.c
time.c sys_i386.c pci-dma.c i386_ksyms.c
i387.c bluesmoke.c dmi_scan.c pci-i386.c
pci-pc.c pci-irq.c head.S init_task.c

arch/i386/mm/ init.c fault.c ioremap.c extable.c
pageattr.c

arch/i386/lib/ checksum.S old-checksum.c delay.c usercopy.c
getuser.S memcpy.c strstr.c

arch/i386/boot/ bootsect.S setup.S

arch/i386/boot/compressed/ head.S misc.c
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