# Constraint-Driven Rank-Based Learning for Information Extraction

Sameer Singh Limin Yao
Sebastian Riedel Andrew McCallum

Department of Computer Science University of Massachusetts, Amherst

Human Language Technologies: North American Chapter of the Association for Computational Linguistics (NAACL HLT)

June 2-4, 2010

## **Outline**

- Motivation
- 2 Background

Undirected Graphical Models Inference and Learning

- **3** Semi-Supervised Rank-Based Learning
  - Self-Training
  - Constraints
  - Self-Training and Constraints
  - Model and Constraints
- **4** Experiments
- **5** Conclusions

## **Outline**

- **1** Motivation
- 2 Background

Undirected Graphical Models Inference and Learning

- 3 Semi-Supervised Rank-Based Learning
  - Seit-Training Constraints
  - Self-Training and Constraints
  - Model and Constraints
- **4** Experiments
- 6 Conclusions

- Information Extraction models are becoming complex:
  - capture higher-order dependencies
  - represent tasks like coreference
  - jointly infer multiple tasks

- Information Extraction models are becoming complex:
  - capture higher-order dependencies
  - represent tasks like coreference
  - jointly infer multiple tasks
- These additional edges make inference really slow

- Information Extraction models are becoming complex:
  - capture higher-order dependencies
  - represent tasks like coreference
  - jointly infer multiple tasks
- These additional edges make inference really slow
- Training requires inference before each update:
  - over the whole dataset (gradient descent)
  - over a subset of the dataset (stochastic gradient descent)
  - over a single instance (perceptron)

- Information Extraction models are becoming complex:
  - capture higher-order dependencies
  - represent tasks like coreference
  - jointly infer multiple tasks
- These additional edges make inference really slow
- Training requires inference before each update:
  - over the whole dataset (gradient descent)
  - over a subset of the dataset (stochastic gradient descent)
  - over a single instance (perceptron)
- SampleRank\* can efficiently train complex models
  - by incorporating updates within inference

<sup>\*</sup>Khashayar et al., 2008 and Wick et al., 2009

- Information Extraction models are becoming complex:
  - capture higher-order dependencies
  - represent tasks like coreference
  - jointly infer multiple tasks
- These additional edges make inference really slow
- Training requires inference before each update:
  - over the whole dataset (gradient descent)
  - over a subset of the dataset (stochastic gradient descent)
  - over a single instance (perceptron)
- SampleRank\* can efficiently train complex models
  - by incorporating updates within inference

#### But what about Semi-Supervised Learning?

<sup>\*</sup>Khashayar et al., 2008 and Wick et al., 2009

#### **Constraint-Based SSL**

Sometimes we have prior knowledge about the tasks:

- e.g. "California" is a LOCATION
- encoded as constraints on features

#### **Constraint-Based SSL**

Sometimes we have prior knowledge about the tasks:

- e.g. "California" is a LOCATION
- encoded as constraints on features

Use this knowledge to learn the model

- Constraint-Driven Learning (CODL): Chang et al., ACL 2007
- Generalized Expectations (GE): Mann, McCallum, ACL 2008
- Alternating Projection (AP): Bellare et al., UAI 2009

#### **Constraint-Based SSL**

Sometimes we have prior knowledge about the tasks:

- e.g. "California" is a LOCATION
- encoded as constraints on features

Use this knowledge to learn the model

- Constraint-Driven Learning (CODL): Chang et al., ACL 2007
- Generalized Expectations (GE): Mann, McCallum, ACL 2008
- Alternating Projection (AP): Bellare et al., UAI 2009

All these methods also require inference before updates

### **Outline**

- Motivation
- 2 Background Undirected Graphical Models Inference and Learning
- Semi-Supervised Rank-Based Learning

Constraints
Self-Training and Constraints
Model and Constraints

- 4 Experiments
- 6 Conclusions

## **Factor Graphs**

- Undirected bipartite graph over variables (x, y) and factors
- Each factor is associated with a scalar potential
  - dot product between parameters and features over neighbors
- Probability distribution represented by the graph:

$$p(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \prod_{j \in \mathcal{F}} \exp \langle \theta_j, \phi_j(\mathbf{x}_j, \mathbf{y}_j) \rangle$$

#### **MCMC Inference**

- Each sample is a configuration of the variables
- Proposal function changes  $\mathbf{y} \to \mathbf{y}^c$
- Acceptance probability depends on ratio of the model scores

$$\frac{p(\mathbf{y}|\mathbf{x})}{p(\mathbf{y}^c|\mathbf{x})} = \prod_{j \in \mathcal{F}} \frac{\exp\langle \theta_j, \phi_j(\mathbf{x}_j, \mathbf{y}_j) \rangle}{\exp\langle \theta_j, \phi_j(\mathbf{x}_j, \mathbf{y}_j^c) \rangle}$$

## Rank-Based Learning<sup>‡</sup>

- Updates parameters within MCMC-inference
- Requires a truth function  $\mathcal{F}: \mathbf{Y} \to \mathcal{R}$ 
  - defined as  $-\mathcal{L}(\mathbf{y}, \mathbf{y}_L)$ , where  $\mathcal{L}$  is the loss,  $\mathbf{y}_L$  is labeled data
  - e.g. accuracy, F1-score, etc.

<sup>&</sup>lt;sup>‡</sup>SampleRank: Khashayar et al., 2008 and Wick et al., 2009

# Rank-Based Learning<sup>‡</sup>

- Updates parameters within MCMC-inference
- Requires a truth function  $\mathcal{F}: \mathbf{Y} \to \mathcal{R}$ 
  - defined as  $-\mathcal{L}(\mathbf{y}, \mathbf{y}_L)$ , where  $\mathcal{L}$  is the loss,  $\mathbf{y}_L$  is labeled data
  - e.g. accuracy, F1-score, etc.
- Each pair of consecutive samples (y, y<sup>c</sup>) is ranked by:
  - 1 the model:  $p(\mathbf{y}|\mathbf{x})$  and  $p(\mathbf{y}^c|\mathbf{x})$
  - 2 the truth function:  $\mathcal{F}(\mathbf{y})$  and  $\mathcal{F}(\mathbf{y}^c)$
- If the rankings disagree, parameters are updated
- Shown to be efficient and achieve high-accuracy †

<sup>&</sup>lt;sup>†</sup>Culotta et al., NAACL-HLT 2007 and Singh et al. ECML-PKDD 2009

<sup>\*</sup>SampleRank: Khashayar et al., 2008 and Wick et al., 2009

#### **Outline**

- Motivation
- Undirected Graphical Models
- **3** Semi-Supervised Rank-Based Learning

Self-Training
Constraints
Self-Training and Constraints
Model and Constraints

- 4 Experiments
- 6 Conclusions

#### **Unlabeled Data**

- If we can specify  $\mathcal{F}$ , we can perform Rank-Based Learning
- If  $\mathbf{x} \in \text{labeled data}$ ,  $\mathcal{F}(\mathbf{y}) = -\mathcal{L}(\mathbf{y}, \mathbf{y}_L)$
- For unlabeled data, we explore multiple candidates
  - based on existing semi-supervised learning techniques

## (I) Self-Training

#### Works as follows:

- 1 Train model on labeled data
- 2 Find the predictions on the unlabeled data
- 3 Add the confident predictions to labeled data
- 4 go to (1)

## (I) Self-Training

#### Works as follows:

- 1 Train model on labeled data
- 2 Find the predictions on the unlabeled data
- 3 Add the confident predictions to labeled data
- 4 go to (1)

Can be directly incorporated into the truth function:

$$\mathcal{F}_{\mathcal{S}}(\mathbf{y}) = -\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}_U)$$

## (II) Encoding Constraints

We may have prior knowledge about our labels

- Constraints  $\{c_i\}$ , where  $c_i(\mathbf{y})$  denotes whether:
  - y satisfies the constraint (+1)
  - $\mathbf{y}$  violates the constraint (-1)
  - constraint does not apply to y (0)

## (II) Encoding Constraints

We may have prior knowledge about our labels

- Constraints  $\{c_i\}$ , where  $c_i(\mathbf{y})$  denotes whether:
  - y satisfies the constraint (+1)
  - y violates the constraint (−1)
  - constraint does not apply to y (0)

Can be incorporated into the truth function:

$$\mathcal{F}_c(\mathbf{y}) = \sum_i c_i(\mathbf{y})$$

## (III) Incorporating Model Predictions

By themselves, Self-Training and Constraints have major drawbacks - combine the two by including model predictions into the truth function

$$\mathcal{F}_{sc}(\mathbf{y}) = \mathcal{F}_{s}(\mathbf{y}) + \lambda_{s} \mathcal{F}_{c}(\mathbf{y}) 
= -\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}_{U}) + \lambda_{s} \sum_{i} c_{i}(\mathbf{y})$$

## (IV) Incorporating Model Scores

Previous function has two potential drawbacks:

- 1 Since we make updates constantly,  $\hat{\mathbf{y}}_{IJ}$  may be obsolete
- 2 Obtaining  $\hat{\mathbf{y}}_U$  requires full inference

# (IV) Incorporating Model Scores

Previous function has two potential drawbacks:

- 1 Since we make updates constantly,  $\hat{\mathbf{y}}_{IJ}$  may be obsolete
- 2 Obtaining  $\hat{\mathbf{y}}_U$  requires full inference

Instead, use the current model score directly!

$$\mathcal{F}_{mc}(\mathbf{y}) = \log p(\mathbf{y}|\mathbf{x},\Theta) + \lambda_m \mathcal{F}_c(\mathbf{y})$$

$$\equiv \sum_i \langle \theta_j, \phi_j(\mathbf{x}_j, \mathbf{y}_j) \rangle + \lambda_m \sum_i c_i(\mathbf{y})^\S$$

<sup>§</sup>Ignore  $\log Z(x)$  since it is independent of **v** 

## **Outline**

- Motivation
- 2 Background

Undirected Graphical Models Inference and Learning

Semi-Supervised Rank-Based Learning

Constraints
Self-Training and Constraints
Model and Constraints

- **4** Experiments
- **6** Conclusions

## Setup

- Experiments on a sequential modeling task
  - Compare with existing work
  - Evaluate utility where exact inference is possible
- Cora citation dataset
  - segment into fields such as "author", "title" and "venue"
  - 300 training, 100 test and 100 dev
  - same constraints as in (Chang et al. ACL 2007)
- The candidates are compared with CODL<sup>¶</sup> and Supervised

<sup>¶</sup>results that did not incorporate constraints during inference

#### **Results**



## **Outline**

- Motivation
- 2 Background

Undirected Graphical Models Inference and Learning

Semi-Supervised Rank-Based Learning

Constraints
Self-Training and Constraints
Model and Constraints

- 4 Experiments
- **6** Conclusions

## **Summary**

- Incorporate semi-supervision into Rank-Based Learning
  - enabling SSL over complex graphical models
- Approach is competitive on a standard dataset
  - with methods that are intractable for complicated models
- Future Work:
  - · Apply to more complicated, loopy models
  - Analysis of which candidate is the best
  - Running time comparisons
  - Consider more SSL algorithms (e.g. co-training, ...)

#### Thanks!

Sameer Singh, Limin Yao, Sebastian Riedel, Andrew McCallum University of Massachusetts, Amherst

{sameer, lmyao, riedel, mccallum}@cs.umass.edu

factorie.googlecode.com