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Motivation
Supervised Information Extraction

¢ Information Extraction models are becoming complex:
e capture higher-order dependencies
e represent tasks like coreference
e jointly infer multiple tasks
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e capture higher-order dependencies
e represent tasks like coreference
e jointly infer multiple tasks

e These additional edges make inference really slow

 Training requires inference before each update:
e over the whole dataset (gradient descent)
e over a subset of the dataset (stochastic gradient descent)
e over a single instance (perceptron)

o SampleRank* can efficiently train complex models

- by incorporating updates within inference

*Khashayar et al., 2008 and Wick et al., 2009
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Motivation
Supervised Information Extraction

¢ Information Extraction models are becoming complex:
e capture higher-order dependencies
e represent tasks like coreference
e jointly infer multiple tasks
e These additional edges make inference really slow
 Training requires inference before each update:

e over the whole dataset (gradient descent)
e over a subset of the dataset (stochastic gradient descent)
e over a single instance (perceptron)

o SampleRank* can efficiently train complex models
- by incorporating updates within inference

But what about Semi-Supervised Learning?

*Khashayar et al., 2008 and Wick et al., 2009
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Motivation

Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:
e e.g. “California” is a LOCATION
e encoded as constraints on features
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Motivation

Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:
e e.g. “California” is a LOCATION
e encoded as constraints on features

Use this knowledge to learn the model
e Constraint-Driven Learning (CODL): Chang et al., ACL 2007
e Generalized Expectations (GE): Mann, McCallum, ACL 2008
e Alternating Projection (AP): Bellare et al., UAI 2009
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Motivation

Constraint-Based SSL

Sometimes we have prior knowledge about the tasks:
e e.g. “California” is a LOCATION
e encoded as constraints on features

Use this knowledge to learn the model
e Constraint-Driven Learning (CODL): Chang et al., ACL 2007
e Generalized Expectations (GE): Mann, McCallum, ACL 2008
e Alternating Projection (AP): Bellare et al., UAI 2009

All these methods also require inference before updates
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Background Undirected Graphical Models

Factor Graphs

¢ Undirected bipartite graph over variables (x,y) and factors

e Each factor is associated with a scalar potential
- dot product between parameters and features over neighbors

¢ Probability distribution represented by the graph:

p(y[x) = sz) 1T exe0;, ¢5(x;. v)))
JEF
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Background Inference and Learning

MCMC Inference

e Each sample is a configuration of the variables
e Proposal function changes 'y — y°
e Acceptance probability depends on ratio of the model scores

p(y|x) Hexp<9b¢f(xjavf)>

POYEX) L7 exp(0). 9;(x;.¥7))
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Background Inference and Learning

Rank-Based Learning*

e Updates parameters within MCMC-inference

e Requires a truth function 7 : Y - R
- defined as —L(y,y.), where L is the loss, y, is labeled data
- e.g. accuracy, F1-score, efc.

‘SampleRank: Khashayar et al., 2008 and Wick et al., 2009
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Background Inference and Learning

Rank-Based Learning*

Updates parameters within MCMC-inference

Requires a truth function 7: Y - R
- defined as —L(y,y.), where L is the loss, y, is labeled data
- e.g. accuracy, F1-score, efc.

Each pair of consecutive samples (y, y°) is ranked by:

© the model: p(y|x) and p(y°|x)
@ the truth function: F(y) and F(y°)

If the rankings disagree, parameters are updated
Shown to be efficient and achieve high-accuracy f

fCulotta et al., NAACL-HLT 2007 and Singh et al. ECML-PKDD 2009
‘SampleRank: Khashayar et al., 2008 and Wick et al., 2009
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Semi-Supervised Learning

Unlabeled Data

« If we can specify F, we can perform Rank-Based Learning
e If x € labeled data, F(y) = —L(y, Y1)

¢ For unlabeled data, we explore multiple candidates
- based on existing semi-supervised learning techniques
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Semi-Supervised Learning Self-Training

(1) Self-Training

Works as follows:
© Train model on labeled data
@ Find the predictions on the unlabeled data
©® Add the confident predictions to labeled data

O goto(1)
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Semi-Supervised Learning Self-Training

(1) Self-Training

Works as follows:
© Train model on labeled data
@ Find the predictions on the unlabeled data
©® Add the confident predictions to labeled data

O goto(1)

Can be directly incorporated into the truth function:

Fs(y) = —L(y,Yv)
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Semi-Supervised Learning Constraints

(11) Encoding Constraints

We may have prior knowledge about our labels
- Constraints {c;}, where c;(y) denotes whether:

¢ y satisfies the constraint (+1)
¢ y violates the constraint (—1)
e constraint does not apply to y (0)

Singh, Yao, Riedel, McCallum (UMass) Constraint-Driven Rank-Based Learning NAACL HLT 2010



Semi-Supervised Learning Constraints

(11) Encoding Constraints

We may have prior knowledge about our labels
- Constraints {c;}, where c;(y) denotes whether:

¢ y satisfies the constraint (+1)
¢ y violates the constraint (—1)
e constraint does not apply to y (0)

Can be incorporated into the truth function:

Fely) = Z ci(y)

Singh, Yao, Riedel, McCallum (UMass) Constraint-Driven Rank-Based Learning NAACL HLT 2010



Semi-Supervised Learning Self-Training and Constraints

(111) Incorporating Model Predictions

By themselves, Self-Training and Constraints have major drawbacks
- combine the two by including model predictions into the truth function

Fsc(Y) = Fs(y) + AsFe(y)
= —L(Y,Y0) + As Z ci(y)
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Semi-Supervised Learning Model and Constraints

(Tv) Incorporating Model Scores

Previous function has two potential drawbacks:
© Since we make updates constantly, y,; may be obsolete
@ Obtaining y requires full inference
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Semi-Supervised Learning Model and Constraints

(Tv) Incorporating Model Scores

Previous function has two potential drawbacks:
© Since we make updates constantly, y,; may be obsolete
@ Obtaining y requires full inference

Instead, use the current model score directly!

Fme(y) = logp(y|x,©) + AmFc(Y)
= D (6,6, ¥) + Am Y Gi(y)"

J ]

SIgnore log Z(x) since it is independent of y
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Experiments
ST=1{1] o)

e Experiments on a sequential modeling task

e Compare with existing work
e Evaluate utility where exact inference is possible

e Cora citation dataset

e segment into fields such as “author”, “title” and “venue”
e 300 training, 100 test and 100 dev
e same constraints as in (Chang et al. ACL 2007)

 The candidates are compared with CODLY and Supervised

Tresults that did not incorporate constraints during inference
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Results
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Conclusions
Summary

¢ Incorporate semi-supervision into Rank-Based Learning
- enabling SSL over complex graphical models

e Approach is competitive on a standard dataset
- with methods that are intractable for complicated models

e Future Work:

Apply to more complicated, loopy models

Analysis of which candidate is the best

Running time comparisons

Consider more SSL algorithms (e.g. co-training, . ..)
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Thanks!
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