
Distilled Split Deep Neural Networks for
Edge-Assisted Real-Time Systems

Yoshitomo Matsubara
University of California, Irvine

yoshitom@uci.edu

Sabur Baidya
University of California, Irvine

sbaidya@uci.edu

Davide Callegaro
University of California, Irvine

dcallega@uci.edu

Marco Levorato
University of California, Irvine

levorato@uci.edu

Sameer Singh
University of California, Irvine

sameer@uci.edu

ABSTRACT
Offloading the execution of complex Deep Neural Networks
(DNNs) models to compute-capable devices at the network
edge, that is, edge servers, can significantly reduce capture-
to-output delay. However, the communication link between
the mobile devices and edge servers can become the bot-
tleneck when channel conditions are poor. We propose a
framework to split DNNs for image processing and minimize
capture-to-output delay in a wide range of network condi-
tions and computing parameters. The core idea is to split
the DNN models into head and tail models, where the two
sections are deployed at the mobile device and edge server,
respectively. Different from prior literature presenting DNN
splitting frameworks, we distill the architecture of the head
DNN to reduce its computational complexity and introduce
a bottleneck, thus minimizing processing load at the mobile
device as well as the amount of wirelessly transferred data.
Our results show 98% reduction in used bandwidth and 85%
in computation load compared to straightforward splitting.

CCS CONCEPTS
• Information systems→Mobile information process-
ing systems; Multimedia streaming;

KEYWORDS
Deep neural networks, network distillation, edge computing.

1 INTRODUCTION
Deep Neural Networks (DNNs) achieve state of the art per-
formance in a broad range of classification, prediction and
control problems. However, the computational complexity of
DNNmodels has been growing together with the complexity
of the problems they solve. For instance, within the image
classification domain, LeNet5, proposed in 1998 [13], consists
of 7 layers only, whereas DenseNet, proposed in 2017 [8],
has 713 low-level layers. Despite the advances in embedded
systems of the recent years, the execution of DNN models
in mobile platforms is becoming increasingly problematic,

especially for mission critical or time sensitive applications,
where the limited processing power and energy supply may
degrade the response time of the system and its lifetime.
Offloading data processing tasks to edge servers [4, 16],

that is, compute-capable devices located at the network edge,
has been proven to be an effective strategy to relieve the com-
putation burden at the mobile devices and reduce capture-
to-classification output delay in some applications. However,
poor channel conditions, for instance due to interference,
contentionwith other data streams, or degraded signal propa-
gation, may significantly increase the amount of time needed
to deliver information-rich data to the edge server even over
1-hop wireless links.

Recently proposed frameworks [9, 10, 12] split DNN mod-
els into head and tail sections, deployed at the mobile device
and edge server, respectively, to optimize processing load dis-
tribution. However, due to structural properties of DNNs for
image processing, a straightforward splitting approach may
lead to a large portion of the processing load to be pushed
to the mobile device, while also resulting in a larger amount
of data to be transferred on the network.
The core contribution of this paper is a more refined ap-

proach to split DNN models and distribute the computation
load for real-time image analysis applications. Specifically,
we distill the head portion of the DNN model, and introduce
a bottleneck within the the distilled head model. This allows
the reduction of the computational complexity at the sensor
while also reducing the amount of wirelessly transferred
data. From a high level perspective, our approach introduces
a special case of autoencoder transforming the input signal
into the input of a later layer through a bottleneck.
We apply this approach to state of the art models and

datasets for image classification, and show that it is possible
to achieve “compression” up to 1% of the input signal with a
complexity 95% smaller than the original head model.
The rest of the paper is organized as follows. Section 2

introduces the problem and discusses structural properties
of DNN models for image classification. In Section 3, we

1

HotEdgeVideo 2019, October 2019, Los Cabos, Mexico Y. Matsubara et al.

In
pu

t
C:

 1
B:

 2
R:

 3
M

: 4 D:
 5

D:
 6

D:
 7

D:
 8

D:
 9

D:
 1

0
B:

 1
1

R:
 1

2
C:

 1
3

A:
 1

4
D:

 1
5

D:
 1

6
D:

 1
7

D:
 1

8
D:

 1
9

D:
 2

0
D:

 2
1

D:
 2

2
D:

 2
3

D:
 2

4
D:

 2
5

D:
 2

6
B:

 2
7

R:
 2

8
C:

 2
9

A:
 3

0
D:

 3
1

D:
 3

2
D:

 3
3

D:
 3

4
D:

 3
5

D:
 3

6
D:

 3
7

D:
 3

8
D:

 3
9

D:
 4

0
D:

 4
1

D:
 4

2
D:

 4
3

D:
 4

4
D:

 4
5

D:
 4

6
D:

 4
7

D:
 4

8
D:

 4
9

D:
 5

0
D:

 5
1

D:
 5

2
D:

 5
3

D:
 5

4
D:

 5
5

D:
 5

6
D:

 5
7

D:
 5

8
D:

 5
9

D:
 6

0
D:

 6
1

D:
 6

2
B:

 6
3

R:
 6

4
C:

 6
5

A:
 6

6
D:

 6
7

D:
 6

8
D:

 6
9

D:
 7

0
D:

 7
1

D:
 7

2
D:

 7
3

D:
 7

4
D:

 7
5

D:
 7

6
D:

 7
7

D:
 7

8
D:

 7
9

D:
 8

0
D:

 8
1

D:
 8

2
D:

 8
3

D:
 8

4
D:

 8
5

D:
 8

6
D:

 8
7

D:
 8

8
D:

 8
9

D:
 9

0
D:

 9
1

D:
 9

2
D:

 9
3

D:
 9

4
D:

 9
5

D:
 9

6
D:

 9
7

D:
 9

8
B:

 9
9

R:
 1

00
A:

 1
01

L:
 1

02

Splittable Layer

10−3

10−2

10−1

100

Sc
al

ed
 D

at
a

Si
ze

DenseNet-169
Input
Zip-compressed

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al
ed
 A
cc
um
ul
at
ed
 C
om
pl
ex
ity

Figure 1: DenseNet-169 as example: Splittable layer-wise scaled output data size (blue and green lines for uncom-
pressed and compressed) defined as the ratio between the size of the layer’s output and input and accumulated
computational complexity (red line). C: convolution, B: batch normalization, R: ReLU, M: max pooling, D: (high-
level) dense, A: average pooling, and L: linear layers.

present the core contribution of this paper: a DNN splitting
strategy where we apply distillation to the head portion and
introduce a bottleneck to maximize offloading performance.
Section 4 reports the results in terms of overall inference
time over suitable embedded computers. Section 5 concludes
the paper.

2 PRELIMINARY DISCUSSION
We consider state of the art DNN models for image classifica-
tion. Specifically, we study: DenseNet-169, -201 [8], ResNet-
152 [7] and Inception-v3 [17]. We train and test the models
on the CalTech 101 [6] and ImageNet [5] datasets.

We remark that in split DNN strategies, the overall infer-
ence time is the sum of three components: the time needed
to execute the head and tail portions of the model – τhead
and τtail respectively – and the time to wirelessly transfer
the output of the head model’s last layer to the edge server
τdata. We assume that the edge server has a high computa-
tion capacity, and seek strategies reducing computation load
at the mobile device – that is, the complexity of the head
network portion – and the amount of data to be transferred.
Pure edge computing can be interpreted as an extreme point
of splitting, where the head portion is composed of 0 layers,
and τdata is the time to transfer the input image.
Figure 1 shows the scaled size of data to be transferred,

expressed as percentage compared to the input size, and
the scaled accumulated complexity (number of operations
performed up to that layer) for the layers of DenseNet-169
where the model can be split. The trend illustrates the issue:
the output of the layers becomes perceivably smaller than the
input only in later layers. Thus, reducing τdata would require
the – weaker – mobile device to execute most of the model,
possibly resulting in an overall larger τhead+τdata compared to
transferring the input image and executing the head portion
at the edge server (pure offloading). Importantly, most early
layers have an output size larger than the input, and reaching
the first point where a reasonable compression is achieved

– approximately 33% of the input at layer 30 – corresponds
to execute 60% of the total operations composing the whole
DNN. The second candidate layer to split the DNN is layer
66, where the output is approximately 21% of the input after
an accumulated complexity of 91% of the whole model. Then,
the output size slowly increases until the very last layers.
Reported in the figure, standard Zip compression allows to
reduce the data size of the DNN layers – or of the input –
without any loss of classification accuracy. However, almost
no compression gain is achieved in “natural” splitting points,
and compression does not provide a real advantage.

Intuitively, these trends do not allow an effective splitting
strategy in asymmetric systems where the mobile device has
a much smaller computational power compared to the edge
server. Additionally, an increase in the time needed to trans-
fer data penalizes splitting with respect to pure offloading.
Thus, we contend that achieving an advantageous balance
between computation at a weaker device and communica-
tion over a possibly impaired wireless channel necessitates
modifications to the DNN architecture.

3 SPLIT MIMIC DNN MODELS
Our overall objective is to reduce the complexity of head
models while minimizing the amount of data transferred
from the mobile device to the edge server. To this aim, we
use two recent tools: network distillation and the introduction
of bottlenecks. Figure 2 illustrates the modifications in the
overall architecture of the DNN. In the experiments shown
in this section, the datasets are randomly split into training,
validation and test datasets with a ratio 8:1:1, respectively.

Bottlenecks have been recently theoretically shown to
promote the DNNs to learn optimal representations [1], thus
achieving compression within the model. However, as re-
ported in Table 1, making more aggressive the “natural” bot-
tlenecks directly in the original DNN model resulted in ac-
curacy degradation even for relatively mild compression
rates. Moreover, some models, such as Inception-v3, do not

2

Distilled Split DNNs for Edge-Assisted Real-Time Systems HotEdgeVideo 2019, October 2019, Los Cabos, Mexico

Figure 2: Illustration of head network distillation

present any candidate splitting point. Thus, more substantial
modifications to the architecture are needed.

Network Distillation
We propose to “shrink” the head model using network

distillation [2, 3, 14, 18], a recently proposed technique to
train small “student” networks approximating the output of
larger “teacher” models. Interestingly, Ba and Caruana [3]
show that student models trained on “soft-labeled” dataset
(output of their teacher models) significantly improve pre-
diction performance compared to student models trained
on the original (“hard-labeled”) training dataset only, i.e.,
without a teacher model. However, distilling entire DNN
models for image analysis to fit the capabilities of mobile
devices could degrade their performance. As an indication
of this issue, effective small models such as MobileNetV2
[15], a lower complexity model designed to run on mobile
devices, achieve a test accuracy of about 71% on CalTech 101
– a significantly worse performance compared to the models
built in this paper. Additionally, MobileNet models have a
significantly higher complexity – 46% increase – placed at
the mobile device compared to the head models we devise.

In the setting considered in this paper, the key advantages
of using distillation are: (a) properly distilled models often
give comparable performance while reducing the number
of parameters used in the model and, thus, computation
complexity. This will allow us to create efficient distilled head

Table 1: Results on Caltech 101 dataset for DenseNet-
169 models redesigned to introduce bottlenecks

Metrics \ 1st Conv *64 channels 8 channels 4 channels

Test accuracy [%] 84.5 83.9 80.5
Data size [%] 133 16.7 8.33

* number of channels in the original model

models mimicking the original head network; (b) student
models often avoid overfitting during distillation as the soft-
target from a teacher model has a regularization effect [3, 18];
and (c) the smaller number of nodes in student models results
in a natural reduction of the data to be transferred to the edge
server if the splitting point is positioned inside the student
model. Moreover, as we will demonstrate later in this section,
the more manageable structure of our student models will
allow the creation of aggressive bottlenecks.
Figure 2 illustrates the student-teacher distillation ap-

proach in the considered split DNN configuration. At first,
we split a pretrained DNN model into head (red) and tail
(blue) networks. Taking DenseNet-169 as an example, Figure
1 allows the identification of the natural bottleneck points in
the original DNN model at the 1st , 2nd and 3rd average pool-
ing layers (layer number 14, 30 and 66). Using our proposed
head network distillation, we split a DNN model at a bottle-
neck point, and build a different smaller student model with
which we replace the original head network for reducing
computational complexity at the mobile device.
We use Adam [11] to train the student models by mini-

mizing the sum of square error between outputs of teacher
and student models, defined as:

SSE(X) =
∑
x ∈X

| |t(x) − s(x)| |2, (1)

where X is a set of b input RGB images. t(x) and s(x) are
(often 3D-shaped) outputs of teacher and student models
respectively, and t(x) is fixed given x and treated as a “soft-
label” to train the student model s(x). Thus, our objective
is to train the student model so that the model can mimic
its teacher model i.e. s(x) ≈ t(x) given the input x . In the
training process, we feed exactly the same input x into both
the teacher and student models. The teacher model has been
already trained with the dataset, and its model parameters
are fixed. The teacher’s output t(x) is treated as a “soft-label”
(target values), and we update the student model’s parame-
ters such that its output s(x) is close to t(x) by minimizing
the loss function defined in Eq. (1).
Table 2 reports the accuracy, data size and complexity

reduction using the proposed techniques on DenseNet-169
and -201 at different splitting points. The mobile device (MD)

3

HotEdgeVideo 2019, October 2019, Los Cabos, Mexico Y. Matsubara et al.

Table 2: Head network distillation results: mimic
model without bottleneck – DenseNet-169 and -201

DenseNet-169 Mimic
Metrics Original 1st SP 2nd SP 3rd SP

Test accuracy [%] 84.5 84.0 84.3 83.8
Data size [%] 66.7 66.7 33.3 20.8
MD complexity 1.28 ×109 2.29 ×108 2.53 ×108 1.30 ×109

(Reduction [%]) (0.00) (82.1) (88.0) (58.2)
DenseNet-201 Mimic

Metrics Original 1st SP 2nd SP 3rd SP

Test accuracy [%] 85.2 84.2 84.1 84.3
Data size [%] 66.7 66.7 33.3 29.2
MD complexity 1.28 ×109 2.29 ×108 2.53 ×108 1.51 ×109

(Reduction [%]) (0.00) (82.1) (88.0) (62.4)

complexity reduction granted by the student model is com-
puted as

(
1 − CS

CT

)
× 100, where CS and CT indicate the total

computational complexity of the student and teacher mod-
els, respectively. Note these mimic models do not alter the
amount of data transferred to the edge server, as they latch to
the original tail network at the bottlenecks already present
in the original model. In the tables, we list the output size of
the 1st bottleneck in the original models as reference. The
head network distillation successfully reduces complexity
of the head model while keeping accuracy comparable to
the original one irrespective of the splitting point. A slight
degradation is perceivable when the student model includes
the layers up to the third bottleneck of DenseNet-169, pos-
sibly indicating the compression of an excessive portion of
the network.
Bottleneck Injection

The student models developed earlier reduce complexity,
but still produce an output size which is, at the minimum,
around 30% of the input at the 3rd splitting point. We now de-
vise distilled student models where we introduce aggressive
bottlenecks to further reduce the amount of data transferred
to the edge server. To this aim, in all the considered DNNs,
we artificially inject bottlenecks at the very early stages of
the student models. We emphasize that, thus, the splitting
point is inside the student model, rather than at its end, and
the edge server will need to execute a portion of the student
model attached to the original tail network.

Even when there is no bottleneck point in the DNN model
(e.g., the ResNet-152 and Inception-v3 models), our proposed
approach enables the introduction of an aggressive bottle-
neckwithin the studentmodel, so that by splitting the student
model at that point we reduce both mobile device-side com-
putational complexity and transferred data size. Compared
to the original models, we achieve a dramatic reduction in
both complexity and output data size with at most about 1%

Table 3: Head network distillation results: mimic
model with bottleneck

Mimicked model
Metrics DN-169 DN-201 ResN-152 Inc-v3

Test accuracy [%] 83.3 (-1.2) 84.1 (-1.1) 83.2 (-1.1) 85.7 (-0.8)
Data size [%] 1.68 1.68 1.68 1.53
MD complexity 1.22 ×108 1.22 ×108 1.22 ×108 2.11 ×108

(Reduction [%]) (94.2) (94.2) (95.5) (84.4)

accuracy drop. The mimic model has an output size of 1−2%
of the input, obtained with a number of operations reduced
by up to 95.5% compared to the original head model.
Due to the extensive time needed to train the models,

we only report preliminary results based on the ImageNet
dataset, presenting a more complex classification tasks due to
its size and the large number of classes. The distilled mimic
model with bottleneck achieved a data size reduction to 11%
of the input, and a complexity reduction of 94%. This result
demonstrate that head model compression is possible even
in difficult tasks.

Remarks on Object Detection
The proposed approach appears to be an extremely promis-

ing technique to balance computation and communication
load between weak mobile devices and edge servers. How-
ever, its application to object detection – a core vision task –
requires some non-trivial extensions. Different from image
classification, DNN-based object detectors are required to
predict bounding boxes and object class for each box, and the
models are often composed of multiple core modules, namely
backbone, classifier, and bounding box regressor modules.
Taking RetinaNet as an example, the model uses the ResNet
architecture as a backbone to extract features for bounding
boxes and object class predictions. In addition, the back-
bone’s output includes multiple scaled outputs, which are
extracted from different stages in a pipeline of the backbone
to inform multi-scale object detection. Note that outputs of
the extracted stages are functions of the earlier extracted
stages, thus the size and characteristics of backbone’s out-
puts are different to each other. This articulate architecture
makes the distillation of head models a technical challenge
which we are currently addressing.

4 INFERENCE TIME EVALUATION
We now evaluate complete processing pipelines over a dis-
tributed mobile device-edge server system, which is the main
focus of this contribution. To this aim, we implement the nec-
essary modules for processing, communication and synchro-
nization within a custom distributed pipeline. The results we
present in the following explore an ample range of hardware
(see Table 4) and communication data rates to provide an

4

Distilled Split DNNs for Edge-Assisted Real-Time Systems HotEdgeVideo 2019, October 2019, Los Cabos, Mexico

Table 4: Hardware specifications

Computer Processor Speed [GHz] RAM [GB]

RPI3b+ ARM Cortex A53 (quad-core) 1.2 1
UP Board Intel Atom x5-Z8350 (quad-core) 1.92 4

Jetson TX2 ARM Cortex-A57 (quad-core)
+ NVIDIA Denver2 (dual-core) 2.0 8

Laptop Intel i7-6700HQ (octa-core) 2.6 16

evaluation of the interesting interplay between the delay
components. The original model is DenseNet-201, and local
computing and pure edge computing Org. (MD) and Org. (ES)
are compared with the mimic model with bottleneck (Mimic
w/B) at the first splitting point.

The set of plots in Fig. 3 reports the gain – expressed as the
ratio between the capture-to-output timeT of theMimic w/B
model and that of pure offloading (Org. ES)/local processing
at the mobile device (Org. MD) – as a function of data rate
in different hardware/network configurations. Figures 3 (a)
and (b) show the gain trends for different mobile devices
when the edge server is the laptop. Intuitively, the larger the
data rate, the smaller the gain with respect to Org. ES, as
the reduction in τdata granted by the bottleneck decreases
compared to the possible disadvantage of executing part
of the processing on a slower platform. Note that slower
mobile devices emphasize the latter, to the point that the
slowest considered embedded device (Raspberry Pi 3) has
a gain smaller than 1, that is, the proposed technique leads
to larger capture-to-output time compared to Org. ES if the
mobile device is much weaker than the edge server, and the
communication link has high capacity.
Conversely, a configuration with a strong mobile device

emphasizes the general reduction of complexity of theMimic
w/B, leading to a substantial gain even when the channel
has high capacity. The opposite trend is observed when we
measure the gain with respect to Org. MD. A larger capacity
reduces the time needed to transfer the tensor and increases
the gain in Mimic w/B. Note that in a range of small channel
capacity determined by the strength of the embedded device,
the gain is below 1, that is, local processing is a better option
as expected.
Similar trends with respect to the data rate are observed

in Figures 3 (c) and (d), where the weakest mobile device
(Raspberry Pi 3) is used in combination with the available
edge servers. Intuitively, this configuration penalizes our ap-
proach in comparison with Org. ES, as even a small amount
of processing positioned at the mobile device may take con-
siderable time. Clearly, this effect is amplified in the presence
of a strong edge server, where we see a reduced range of data
rates where our technique provides a gain with respect to
Org. ES. However, the weak processing capabilities of Rasp-
berry Pi 3 leads to a considerable gain of distributed Mimic

0 2 4 6 8 10
Data Rate [Mbps]

0
2
4
6
8

10
12
14

Ga
in

 w
.r.

t.
ed

ge
 p

ro
c. RPI3b

UpBoard
Jetson

(a) Gain w.r.t. full offloading,
Laptop as ES.

0 2 4 6 8 10
Data Rate [Mbps]

0

10

20

30

40

50

Ga
in
 w

.r.
t.
lo
ca

l p
ro
c.

RPI3b
UpBoard
Jetson

(b) Gain w.r.t. local process-
ing, Laptop as ES.

0 2 4 6 8 10
Data Rate [Mbps]

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Ga
in

 w
.r.

t.
ed

ge
 p

ro
c.

UpBoard
Jetson
Laptop

(c) Gain w.r.t. full offloading,
RPI3b+ as MD.

0 2 4 6 8 10
Data Rate [Mbps]

0

10

20

30

40

50

Ga
in

 w
.r.

t.
lo

ca
l p

ro
c.

UpBoard
Jetson
Laptop

(d) Gain w.r.t. local process-
ing, RPI3b+ as MD.

Figure 3: Ratio between the total capture-to-output time T
of the proposed technique (Mimic w/B) and pure offloading
(a) and (c), and local processing (b) and (c) for different hard-
ware configurations.

w/B with respect to local processing in a range of channel
capacity values.

Overall, Mimic w/B provides a substantial gain in configu-
rations where the processing capacity of the mobile device
and edge server are not excessively different, and the channel
conditions are not extreme – either excessively large or small
data rate. In essence, the proposed approach represents an
intermediate option between local processing and edge com-
puting in the range of conditions where both these extreme
points are operating suboptimally.

5 CONCLUSIONS
In this paper, we proposed an approach to effectively split
DNNs in edge-assisted systems. Our technique is based on
network distillation, which is applied to the head portion of
the split model. The distilled head model is then modified
to introduce a bottleneck. Further studies are necessary to
understand the general implications of our approach. How-
ever, intuition suggests that it could roughly correspond to
a special case of autoencoder directly mapping the input of
the DNN to the input of a later layer. The student-teacher
based approach to derive this portion of the network results
into an effective training, allowing the construction of small
models with aggressive bottlenecks. Results on real-world
embedded computers identify the range of communication
rates in which the proposed technique is effective.

5

HotEdgeVideo 2019, October 2019, Los Cabos, Mexico Y. Matsubara et al.

REFERENCES
[1] Alessandro Achille and Stefano Soatto. 2018. Information dropout:

Learning optimal representations through noisy computation. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2018).

[2] Rohan Anil, Gabriel Pereyra, Alexandre Passos, Robert Ormandi,
George E Dahl, and Geoffrey E Hinton. 2018. Large scale distributed
neural network training through online distillation. In Sixth Interna-
tional Conference on Learning Representations.

[3] Jimmy Ba and Rich Caruana. 2014. Do deep nets really need to be deep?.
In Advances in neural information processing systems. 2654–2662.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012.
Fog computing and its role in the internet of things. In Proceedings of
the first edition of the MCC workshop on Mobile cloud computing. ACM,
13–16.

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
2009. Imagenet: A large-scale hierarchical image database. In 2009 IEEE
conference on computer vision and pattern recognition. Ieee, 248–255.

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. 2006. One-shot learning of
object categories. IEEE transactions on pattern analysis and machine
intelligence 28, 4 (2006), 594–611.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 770–778.

[8] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-
berger. 2017. Densely Connected Convolutional Networks. In CVPR,
Vol. 1. 3.

[9] Hyuk-Jin Jeong, InChang Jeong, Hyeon-Jae Lee, and Soo-Mook Moon.
2018. Computation Offloading for Machine Learning Web Apps in the
Edge Server Environment. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS). IEEE, 1492–1499.

[10] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor
Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collabora-
tive Intelligence Between the Cloud and Mobile Edge. In Proceedings of
the Twenty-Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’17). ACM,
New York, NY, USA, 615–629. https://doi.org/10.1145/3037697.3037698

[11] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Sto-
chastic Optimization. In Third International Conference on Learning
Representations.

[12] Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio For-
livesi, Lei Jiao, Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A
Software Accelerator for Low-power Deep Learning Inference on Mo-
bile Devices. In Proceedings of the 15th International Conference on
Information Processing in Sensor Networks (IPSN ’16). IEEE Press, Arti-
cle 23, 12 pages.

[13] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324.

[14] Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan Gong. 2014. Learning
small-size DNN with output-distribution-based criteria. In Fifteenth
annual conference of the international speech communication associa-
tion.

[15] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. MobileNetV2: Inverted Residuals and
Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 4510–4520.

[16] Mahadev Satyanarayanan, Victor Bahl, Ramón Caceres, and Nigel
Davies. 2009. The case for vm-based cloudlets in mobile computing.
IEEE pervasive Computing (2009).

[17] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. 2016. Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2818–2826.

[18] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, OzlemAslan,
Shengjie Wang, Rich Caruana, Abdelrahman Mohamed, Matthai Phili-
pose, and Matt Richardson. 2017. Do deep convolutional nets really
need to be deep and convolutional?. In Fifth International Conference
on Learning Representations.

6

https://doi.org/10.1145/3037697.3037698

	Abstract
	1 Introduction
	2 Preliminary Discussion
	3 Split Mimic DNN Models
	4 Inference Time Evaluation
	5 Conclusions
	References

