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Abstract

Conditional random fields (CRFs) are an im-
portant class of models for accurate structured
prediction, but effective design of the feature
functions is a major challenge when applying
CRF models to real world data. Gradient
boosting, which is used to automatically in-
duce and select feature functions, is a natural
candidate solution to the problem. However,
it is non-trivial to derive gradient boosting
algorithms for CRFs due to the dense Hessian
matrices introduced by variable dependencies.
Existing approaches thus use only first-order
information when optimizing likelihood, and
hence face convergence issues. We incorpo-
rate second-order information by deriving a
Markov Chain mixing rate bound to quantify
the dependencies, and introduce a gradient
boosting algorithm that iteratively optimizes
an adaptive upper bound of the objective
function. The resulting algorithm induces
and selects features for CRFs via functional
space optimization, with provable convergence
guarantees. Experimental results on three
real world datasets demonstrate that the mix-
ing rate based upper bound is effective for
learning CRFs with non-linear potentials.

1 INTRODUCTION

Many problems in machine learning involve structured
prediction, i.e., predicting a group of outputs that
depend on each other. Conditional random fields
(CRFs) [Lafferty et al., 2001] are among the most suc-
cessful solutions to this problem. Variants of tree-
shaped conditional random fields have been proposed
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and widely applied to structured prediction problems in
domains such as natural language processing [Lafferty
et al., 2001, Sha and Pereira, 2003], computer vision [He
et al., 2004, Quattoni et al.], and bio-informatics [Vin-
son et al., 2007]. As opposed to classification models
that assume independent output variables, CRFs model
the dependencies between various output variables via
potential functions. These potential functions are usu-
ally defined using a linear combination of carefully en-
gineered features of the input and the output variables.
Since these feature functions are crucial for learning
accurate models, it is important to ask whether we can
automatically induce arbitrary potential functions (via
functional space optimization), instead of manually
crafting them and/or restricting them to linear combi-
nations.

Gradient boosting [Friedman, 2001], which performs
additive training in functional spaces, is a natural can-
didate for this problem. Effective gradient boosting al-
gorithms such as LogitBoost and its variants [Friedman
et al., 1998, Li, 2010, Sun et al., 2012] have been pro-
posed for inducing feature functions for (independent)
multi-class classification problems. The key ingredient
in these methods is the effective use of second order
information via diagonal approximation of Hessian ma-
trices. Unfortunately, it is non-trivial to develop such
boosting methods for CRFs, since variable interdepen-
dencies introduce dense Hessian matrices that make
gradient boosting infeasible due to the computational
complexity. Instead, existing boosting approaches ei-
ther optimize approximate objectives [Torralba et al.,
Liao et al., 2007] or only take first order information
into account when optimizing exact likelihood [Diet-
terich et al., 2008]. Unfortunately, convergence of the
latter method is guaranteed only with small step sizes.

In this paper, we present a novel gradient boosting al-
gorithm inducing non-linear feature functions for tree-
shaped CRFs. The CRF training is performed via
iteratively optimizing adaptive upper bounds of the
loss function, to address the challenge of dense Hes-
sians. The adaptive bounds, which are derived using
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Markov Chain mixing rates, measure the dependency
between variables, and accordingly control the con-
servativeness of the updates. The resulting gradient
boosting algorithm, which can be viewed as general-
ization of LogitBoost to structure prediction problems,
optimizes the CRF objective with provable convergence
guarantees. Experimental results on three real world
datasets demonstrate the effectiveness and efficiency of
the proposed algorithm.

2 OVERVIEW OF METHOD

Model Formalization: Given an input x ∈ X , a
Conditional Random Field (CRF) [Lafferty et al., 2001]
defines the distribution over the outputs y ∈ Y as

P (y|x) =
exp(Φ(y,x))∑

y′∈Y exp(Φ(y′,x))
(1)

where Y is the set of possible output combinations, and
Φ(y,x) captures the dependency between the input
and output variables. The model Φ usually factorizes
as a sum of unary and pairwise (edge) potential func-
tions φi : X → R between individual output variables,
expressed as follows:

Φ(y,x) =

m∑
i=1

φi(x)µi(y), φi ∈ F , µi(y) ∈ N ∪ E

subject to φi = φj for (i, j) ∈ C,
(2)

where N = {1(yt = k)}, E = {1(ys = k1, yt = k2)}
are the sets of indicator functions for each node and
edge state. Each µi corresponds to an event yt = k
(for unary potentials) or ys = k1, yt = k2 (for edge
potentials). In other words, the potential φi(x) defines
the weight for the event µi(y) = 1 in Φ(y,x). We use
µ as short hand for µ(y) and view them as a vector
of random variables. F = FN ∪ FE is the family of all
possible node and edge potential functions, which may
be infinite in size. The set of constraints in C represent
the equivalence classes in different parts of the model,
and is used to define the parameter sharing between po-
tentials that is common to most applications of CRFs.
In standard linear-chain CRFs with linear potentials,
F contains linear functions of x, and C is used to share
parameters between the potential functions at differ-
ent positions. LogitBoost considers arbitrary F , but
constrains the model to contain only node potentials
(there are no edge potentials). In this paper, we are in-
terested in arbitrary function families F , and focus on
tree-shaped E that allow exact inference of marginals.

Training Objective: Treating functions φ in Eq. (2)
as the model parameters allows us to view model
training as automatic induction of potential functions
through functional space optimization. In particular,

we generalize the standard CRF objective over train-
ing data D = {(y,x)} to minimization over φ of the
following:

LD(φ) =
∑

y,x∈D
l(y,x, φ) +

∑
c

Ω(φc)

=−
∑

y,x∈D
lnP (y|x) +

∑
c

Ω(φc).
(3)

Here l is the negative log-likelihood function over each
data point.

∑
c Ω(φc) is a regularization term that

measures the complexity of the learned function, and
is defined as a sum over the equivalence classes in
C. In standard CRFs, for example, Ω is often the
square of the L2 norm of the parameter vector. This
generalized objective function encourages us to select
predictive (i.e., optimizes l) and simple (i.e., optimizes
Ω) functions as potentials of a CRF.

Challenges for Function Learning: Since the
model parameters in this formulation are functions,
Eq. (3) cannot be directly optimized using traditional
optimization techniques. Instead, we train the model
additively: at each iteration t, our proposed algorithm
first searches over the functional space F to find func-
tions δ = [δ1, δ2, · · · , δm] that optimize the objective
function LD(φ(t) + δ), and then adds them to the cur-
rent model φ(t+1) ← φ(t) + δ. Note that each δi is a
scalar function of x.

Directly performing such a brute-force search, how-
ever, requires a large amount of computation due to
the complex nature of the objective function, and is
thus infeasible. In the same spirit as LogitBoost for
multi-class prediction [Friedman et al., 1998, Li, 2010],
we consider the second order Taylor expansion of the
negative log-likelihood l(y,x, φ):

l(y,x, φ+ δ) ' l(y,x, φ) + δTG(y,x) +
1

2
δTH(y,x)δ.

(4)
The gradient G and Hessian H in Eq.(4) are given by:

Gi = µi(y)− pi, Hij = pij − pipj . (5)

where pi and pij are short hand notations for pi ,
P (µi = 1|x), pij , P (µiµj = 1|x), i.e., the marginals
that can be computed efficiently using dynamic pro-
gramming for acyclic models. The derivation of G
and H in Eq. (5), which is the same as used for stan-
dard CRFs, is provided in Appendix A for reference.
Note that Eq.(5) holds for all i, j pairs, including two
special cases: (1) Hii = pi(1 − pi) when i = j, and
(2) Hij = −pipj when µi and µj are mutually exclu-
sive events. Intuitively, Hij measures the correlation
between two events, and is nonzero due to the de-
pendencies in the CRF model. Unfortunately, these
dense elements of the Hessian make direct optimization
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of Eq. (4) still extremely expensive. An existing ap-
proach to functional optimization for CRFs, presented
in Dietterich et al. [2008], avoids this concern by re-
sorting to the first order approximation of the loss,
and only guarantees convergence when the step size is
small. An alternative is to iteratively update one δi for
i ∈ {1, · · · ,m} at a time. This approach would require
m inference steps per iteration, and further, is simply
not applicable when parameters are shared (i.e. when
constraints C exist).

Our Approach: In this paper, we instead consider
an upper bound of Eq. (4). The intuition behind this
approach, which will be formalized in the following
sections, is as follows: each variable in the CRF de-
pends weakly on variables that are “far” from it. This
motivates the use of a diagonal upper bound of the Hes-
sian to construct loss functions, given by the following
Lemma.

Lemma 2.1. Let U be a index set of potential functions
we want to update, and let γ be a vector function that
satisfies the following inequality

γi(y,x)Hii(y,x) ≥
∑
j∈U
|Hij(y,x)| (6)

Then for δ ∈ {[δ1, δ2, · · · , δm] | δi = 0 for i /∈ U}, the
following inequality holds,

l(y,x, φ+ δ) ≤l(y,x, φ) +
∑
i∈U

δiGi(y,x)

+
∑
i∈U

1

2
γi(y,x)Hii(y,x)δ2i (y,x)

+ o(δ2(y,x)).

(7)

We provide the detailed proof of the lemma in Ap-
pendix B. For any γ that satisfies the condition, we
iteratively optimize L̃D(φ, δ), which is an upper bound
of LD(φ, δ).

L̃D(φ, δ) =LD(φ) +
∑
i∈U

∑
x,y∈D

Gi(y,x)δi(y,x)

+
∑
i∈U

1

2

∑
x,y∈D

γi(y,x)Hii(y,x)δ2i (y,x)

+
∑
i∈U

(
Ω(φi + δi)− Ω(φi)

)
.

(8)

L̃D(φ, δ) is composed of |U| independent loss functions
with a regularization term, and can be used to guide
the common function search (such as regression tree
learning). Iteratively optimizing L̃D will result in a gra-
dient boosting algorithm that ensures the convergence
of LD (Proof in Section 4). Furthermore, the form
of L̃D allows the search of δi for i ∈ U to be done in

parallel for each equivalence class defined by C, which
gives us further computational benefits. In the next
two sections, we will discuss how we can efficiently es-
timate γ when U is the index set of all node potentials,
and when it is the index set of all edge potentials, using
the mixing rate of Markov chain.

3 UPPER BOUND DERIVATION
USING A MARKOV CHAIN
MIXING RATE

In this section, we will discuss how we can estimate γ
when U is the index set of all node potentials, and the
index set of all edge potentials. Conceptually, the choice
of γ should be related to the dependencies between the
variables in the current model. When the variables in
the model are independent from each other γ should
be small, and when the variables in the model have
strong dependencies, γ should be large. We want to
quantitatively measure the dependencies in the CRF.
Specifically, we describe the connection of the level of
dependency between variables to the mixing rate of a
Markov chain defined by the conditional distribution
P (y|x). To begin with, we re-express the right side
of Eq. (6) using total variation distance, defined by
‖P −Q‖tv = 1

2

∑
x |P (x)−Q(x)|.

Lemma 3.1. Let U correspond to the set of all node po-
tentials U = {j|φj ∈ N}, assuming index i corresponds
to the event yt = k, i.e., µi = 1(yt = k), then∑

j∈U
|Hij | = 2pi

∑
s

‖P (ys|x, µi = 1)−P (ys|x)‖tv. (9)

Lemma 3.2. Let U correspond to the set of all edge
potentials U = {j|φj ∈ E}, then∑
j∈U
|Hij | = 2pi

∑
(s,v)∈E

‖P (ys, yv|x, µi = 1)−P (ys, yv|x)‖tv.

(10)
Note that we abuse the notation slightly here, by using
E to indicate the index set of edges in CRF.

The proof is a re-arrangement of terms, and is provided
in Appendix C. Intuitively, the total variation terms
in Lemma 3.1 and 3.2 measure how dependent ys is
on the event yt = k. When ys depends only weakly
on yt, the distance will be small. The complexity of
calculating Eq. (9) for all i is quadratic in the number of
nodes, which is too expensive to be computed directly
for most applications. We instead need an algorithm
that scales linearly in the number of nodes.

Intuitively, we expect the dependencies between ys and
yt to become smaller as we change s to get away from
t. We formally state this in the following theorem:
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Theorem 3.1. Mixing rate bound for Markov chain.
Assume yt, ys and yv form a Markov chain yt → ys →
yv, conditioned on x, i.e., P (yv|ys, yt,x) = P (yv|ys,x)
holds. Define d(s, t, k) , ‖P (ys|x, yt = k)−P (ys|x)‖tv,
and αs,v , [1−

∑
j mini P (yv = j|ys = i,x)] Then, the

total variation d(v, t, k) can be bounded by

d(v, t, k) ≤ αs,vd(s, t, k). (11)

Proof. Define notation: Mij , P (yv = j|ys = i,x) and

Qj , miniMij , then

2d(v, t, k)

=
∑
j

|P (yv = j|yt = k,x)− P (yv = j|x)|

=
∑
j

|
∑
i

MijP (ys = i|yt = k,x)−
∑
i

MijP (ys = i|x)|

=
∑
j

|
∑
i

(Mij −Qj)[P (ys = i|yt = k,x)− P (ys = i|x)]|

≤
∑
j

∑
i

(Mij −Qj)|P (ys = i|yt = k,x)− P (ys = i|x)|

=
∑
i

(1−
∑
j

Qj)|P (ys = i|yt = k,x)− P (ys = i|x)|

= 2αs,vd(s, t, k)

The derivation of Theorem 3.1 is inspired, in spirit, by
the mixing rate bounds of time homogeneous Markov
Chains [Levin et al., 2008]1. Intuitively, Theorem 3.1
shows that the dependency decays exponentially as s
moves away from t. The following corollary holds as a
direct consequence of the theorem.

Corollary 3.1. Let q = [q(1), q(2), · · · q(n)] be the path
in E from t to s (i.e., q(1) = t, q(n) = s) then we can
bound d(t, s, k) using d(t, t, k) times the decay ratio α
along the path,

d(s, t, k) ≤
n−1∏
i

αq(i),q(i+1)d(t, t, k). (12)

In the case when E is a chain, Corollary 3.1 simplifies
to d(s, t, k) ≤

∏s−1
h=t αh,h+1d(t, t, k) when s > t, and

d(s, t, k) ≤
∏t

h=s+1 αh,h−1d(t, t, k) when s < t. An
important property of Theorem 3.1 is that the position
specific rate αs,v can be computed efficiently (com-
plexity analysis in Sec. 4). We still need to calculate
d(t, t, k), which is given by the following lemma.

Lemma 3.3. Let M correspond to the index set of µi

such that: 1) µi, µj are mutually exclusive (i.e., µiµj =

1Our proof is actually for time inhomogeneous Markov
Chains.

0 for i 6= j, i, j ∈M); 2)
∑

j∈M P (µi = j|x) = 1.
Then the following identity holds

1

2

∑
j∈M
|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

= 1− P (µi = 1|x) (13)

The proof is given in Appendix D. From Lemma 3.3, it
follows that d(t, t, k) = 1− pi. We will use Lemma 3.3
and Corollary 3.1 to efficiently estimate γ in next sec-
tion.

4 GRADIENT BOOSTING FOR
CONDITIONAL RANDOM
FIELDS

In this section, we will present our gradient boosting
algorithm. We will give estimation of γ for U (the index
set of all node potentials or edge potentials), given by
the following two theorems.

Theorem 4.1. Let U be the index set of all node po-
tentials, assume µi = 1(yt = k) and define Q(s, t) to
be the set of all edges in the path from s to t, then

γ
(n)
i (y,x) , 2(1 +

∑
s6=t,s∈N

∏
(a,b)∈Q(s,t)

αb,a) (14)

satisfies Eq.(6). Here α is defined in Theorem 3.1.

Theorem 4.2. Let U be the index the set of all edge
potentials, assume µi = 1(yt = k1, yt′ = k2). For
(a, b) ∈ E, define V ((a, b); a) to be the set of nodes that
are closer to a than b,

V ((a, b); a) , {s ∈ N |(b, a) /∈ Q(s, a), s 6= a, s 6= b}

then

γ
(e)
i (y,x) ,2

[
3 +

∑
s∈V((t,t′);t)

∏
(a,b)∈Q(s,t)

αb,a

+
∑

s∈V((t′,t);t′)

∏
(a,b)∈Q(s,t′)

αb,a)
] (15)

satisfies Eq.(6), with the α as in Theorem 4.1.

Both theorems can be proved by using Corollary 3.1 and
Lemma 3.3 to bound the total variation distance. Intu-
itively, we bound each of the total variation distances
between two nodes’ states by recursively applying the
mixing rate bound along the path between the two
nodes, resulting in the bounds given by the theorems.
We include the proof of Theorem 4.1 here, and leave
the proof of Theorem 4.2 for Appendix E.

Proof. Proof for Theorem 4.1 Basically, we want to
bound the total variation distance given by Eq. (9) in
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Lemma 3.1,

2pi
∑
s

‖P (ys|x, ys = k)− P (ys|x)‖tv

= 2pi[d(t, t, k) +
∑
s6=t

d(s, t, k)]

≤ 2pi[d(t, t, k) +
∑
s6=t

d(t, t, k)
∏

(a,b)∈Q(s,t)

αb,a]

= 2pi(1− pi)[1 +
∑
s6=t

∏
(a,b)∈Q(s,t)

αb,a]

Here the inequality is given by Corol-
lary 3.1 (d(s, t, k) ≤ d(t, t, k)

∏
(a,b)∈Q(s,t) αb,a), and

the last equality is given by Lemma 3.3 (d(t, t, k) =
1− pi). Recall that Hii = pi(1− pi), we have proved
Theorem 4.1.

The calculation of γ can be performed using dynamic
programming. To explain the algorithm clearly, let us
define an auxiliary message variable

βs→t , αt,s

∑
h∈V((s,t);s)

∏
(a,b)∈Q(h,s)

(αb,a + 1) (16)

We can rearrange γ
(n)
i in Theorem 4.1 in terms of β,

where the index i satisfies µi = 1(yt = k), as

γ
(n)
i (y,x) = 2

(
1 +

∑
s:(s,t)∈E

βs→t

)
.

Similarly for γ
(e)
i in Theorem 4.2, where the index i

satisfies µi = 1(yt = k1, yt′ = k2), we have

γ
(e)
i (y,x) = 2

(
3+

∑
s:(s,t)∈E,s6=t′

βs→t+
∑

s:(s,t′)∈E,s6=t

βs→t′

)
.

The calculation of β can be done efficiently using a
message passing algorithm with the following update.

βs→t ← αt,s

(
1 +

∑
h:(h,s)∈E,h 6=t

βh→s

)
(17)

In the case of linear chain CRF, our problem is re-
duced to the calculation of βt+1→t ,

∑n
s=t

∏s−1
i=t αi,i+1

and βt−1→t ,
∑t

s=1

∏t
i=s+1 αi,i−1, and the message

updates in Eq. 17 correspond to a forward-backward
algorithm using the following recursion formula:

βt+1→t = αt,t+1

(
1 + βt+2→t+1

)
βt−1→t = αt,t−1

(
1 + βt−1→t−2

)
.

A direct consequence of Theorem 4.1 is that we can
bound the loss based on the number of nodes in CRF.
However, this bound is usually much worse than the
bound using the mixing rate.

Algorithm 1 Gradient Boosting for CRF

repeat
for U ∈ {N, E} do
for y,x ∈ D in parallel do
{inference of pi, γi are done using dynamic
programming}
Infer Gi(y,x)← µi(y)− pi,

Hii(y,x)← pi(1− pi) for each i ∈ U
Infer γi(y,x) using dynamic programming

for each i ∈ U
end for
for [c] ⊂ U in parallel do
{We use [c] to enumerate over set of equivalent
index defined by C in U}
δc ← argminδ∈FN

Ω(φi + δ)

+
∑
i∈[c]

∑
y,x∈D

[
Gi(y,x)δ(y,x)

+γi(y,x)Hii(y,x)δ2(y,x)
]

φc ← φc + εδc
end for

end for
until convergence

Corollary 4.1. When U is the index set of node poten-
tials, γi = 2n satisfies Eq. (6), where n is the number
of nodes in the CRF.

Based on Theorem 4.1 and 4.2, we can get an efficient
gradient boosting algorithm for CRF (GBCRF), which
is presented in Algorithm 1. Here ε is a shrinkage term
used to avoid overfitting. Our algorithm adaptively
estimates γ via the mixing rate calculation at each
iteration. At the beginning, when each variable is
nearly independent from each other, we will have a γ
that is close to 2 (and thus the updates are aggressive).
γ increases as the variables become dependent on each
other (resulting in more conservative updates).

Relation to LogitBoost: Our algorithm can be
viewed as a generalization of multi-class classification
using LogitBoost [Friedman et al., 1998]. When E = ∅
in Eq. (2), our model degenerates to the LogiBoost
model. In this case, the variables in each position are
independent, the estimation of γ is 2, and Algorithm 1
is exactly equivalent to LogitBoost. When the variables
are dependent on each other, which is common in struc-
tured prediction, our model estimates the dependency
level via the Markov Chain mixing rate to guide the
boosting objective in each iteration.

Time Complexity: The time complexity for the gra-
dient boosting statistics collection in Algorithm 1 is
O(|D|nK2), where K is the number of states in each
node and n is the average number of nodes (e.g. length
of sequence) in each instance. This is due to the fact
that estimation of γ can be done in O(|D|nK2) time,
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by using a dynamic programming algorithm. This
complexity is same as the complexity for traditional
training methods for linear CRF. The time complex-
ity of the entire algorithm is O(|D|nK2 + g(|D|, n)),
where g(|D|, n) is the cost of function learning given
the statistics. For learning trees, the complexity of
function learning is usually O (|D|n log(|D|n)). Thus
our approach extends CRFs to non-linearity with only
an additional log factor. Further, note that the time
complexity is same as Dietterich et al. [2008]. We
also observed that both methods ran in comparable
times in our experiments. This gives our approach the
benefit of second-order information without any extra
computational penalty.

Convergence Analysis: In this section, we analyze
the convergence of our algorithm. One advantage of our
method is that it makes use of second order information,
and guarantees convergence.

Theorem 4.3. LD(φ) converges with the procedure
described by Algorithm 1 for ε ≤ 1.

Proof. During each iteration, assume δ∗ is the function
that optimizes L̃D(φ, δ) defined in Eq. (8),

LD(φ+ εδ∗) ≤ L̃D(φ, εδ∗) ≤ L̃D(φ,0) = LD(φ) (18)

Then the loss function LD decreases after each boosting
step, and the algorithm converges to a minima (possibly
local minima when F is nonlinear) of LD.

5 RELATED WORK

Conditional random fields [Lafferty et al., 2001] are
among the most successful solutions to structured pre-
diction problems. Variants of conditional random fields
have been proposed and widely applied to structured
prediction in domains such as natural language pro-
cessing [Lafferty et al., 2001, Sha and Pereira, 2003],
computer vision [He et al., 2004, Quattoni et al.] and
bio-informatics [Vinson et al., 2007]. Most popular
instantiations assume linear potential functions and im-
prove the performance by carefully engineering features.
Our work focuses on learning probabilistic models for
tree-shaped CRFs with nonlinear potential functions.
When there are loops in the CRF and inference is in-
tractable, relaxation of the objective can be done to use
approximate inference and learning [Hazan and Urta-
sun, 2012, Meshi et al., 2010, Domke, 2013]. A similar
dependency based term is also used in the approxi-
mate inference [Meshi et al., 2010, Domke, 2013], but
is usually set to be a constant value across all instances
and training iterations. As a future work, it would be
interesting to explore whether our adaptive Markov
Chain mixing rate bound can be applied to this more
general setting. Gradient boosting [Friedman, 2001],

which performs additive optimization in the functional
space, has been successfully applied to classification
problems that assume independent outputs conditioned
on the input [Friedman et al., 1998]. Most existing at-
tempts to “boost” CRF models optimize approximate
objectives [Torralba et al., Liao et al., 2007]. TreeCRF
algorithm [Dietterich et al., 2008] is similar to our ap-
proach in that it directly optimizes the log-likelihood
function defined using non-linear potential functions.
However they only take first order information into
account during optimization, requiring a decreasing
step size. On the other hand, our method makes use of
second order information, and guarantees convergence
with fixed step size. Our method can also be viewed as a
generalization of LogitBoost [Friedman et al., 1998] for
CRF. It is worth noting that the recent improvements
of LogitBoost, which uses adaptive base function [Li,
2010, Sun et al., 2012], can potentially be combined
with our method to obtain further improvements.

6 EXPERIMENTS

In this section, we evaluate various training approaches
on three applications of CRFs: named entity recogni-
tion, hand written character recognition, and protein
secondary structure prediction. We compare the fol-
lowing methods: (1) GBCRF is the proposed method
in this paper. We set FN to be a set of regression
trees, and FE to be linear functions of basic transition
features between states; (2) LogitBoost is a gradient
boosting method for multi-class classification [Friedman
et al., 1998] that does not support the dependencies
between outputs; (3) TreeCRF is a gradient boosting
method that only takes first-order information [Diet-
terich et al., 2008]. We use the same family of edge and
node potentials as GBCRF; (4) Linear CRF is the
standard CRF model with linear edge and node poten-
tials [Lafferty et al., 2001]. To control the complexity
of the model, we limit maximum depth of the trees,
and use L2 regularization for the linear models. For all
the methods, training hyper-parameters (including the
maximum depths of the trees and the L2 regularization)
are selected using a validation set or cross validation,
depending on the specific setup of each dataset.

6.1 Named Entity Recognition

We first test our methods on the natural language task
of named entity recognition (NER) using the CoNLL-
2003 shared task benchmark dataset [Tjong Kim Sang
and De Meulder, 2003]. The dataset contains around
20K sentences, and defines a standard split into 14K as
training set, 3.3K as validation set (also called develop-
ment set), and 3.5K sentences as test set. Traditional
approaches for NER involve time-consuming feature
engineering that requires domain expertise, and build
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Table 1: F1 Measure of Name Entity Recognition on
CoNLL-2003 Dataset. We use subscript val to denote
validation set, and subscript test to denote test set.

Embedding Features+Embd

Method F1val F1test F1val F1test

Linear CRF 84.52 79.43 89.52 84.75
LogitBoost 85.32 78.87 87.17 81.97
TreeCRF 86.30 80.60 88.46 83.99
GBCRF 88.01 82.69 90.15 86.35

Table 2: Cross Validation Error on
Handwritten Character Recognition Dataset.

Method Error

Linear CRF 0.1292 ± 0.0080
LogitBoost 0.0967 ± 0.0049
TreeCRF 0.0699 ± 0.0040
GBCRF 0.0464 ± 0.0027
NeuroCRF [Do and Artieres, 2010] 0.0444

a Linear CRF over these features. Instead, in our ex-
periments, we explore whether it is possible to perform
minimal feature engineering, and use a representation
learned from data for prediction.

Specifically, we use the word embedding vectors from
Mikolov et al. [2013], which is learned from the Google
news corpus, and train the models on this representa-
tion. In this setting, each word is represented by a 300
dimensional vector that captures the semantics of the
word. For each position in the sentence, we take the
embedding vector of the previous, current, and the next
word as input to the node potential function. We call
this setting “Embedding”. We further perform mini-
mal feature engineering to only generate the unigram
features (word, postag, and case pattern of current
word). We use these basic features to train a weak
linear model, then use additive training to boost the
base model using the word embedding representation.
We call this setting “Features+Embd”.

The results of official evaluation measure for these
models, which computes an F1 measure over complete
span predictions, are shown in Table 1. From these
results, we see that GBCRF works better than Linear
CRF in both settings. The gap between LogitBoost and
GBCRF indicates the importance of introducing edge
potentials to this problem. We also find that taking
second order information into account helps us obtain
a more accurate model. Our result is also comparable
to the result that uses a comprehensive set of features,
i.e., the approach behind the standard Stanford NER
model [Finkel et al., 2005] that achieves an F1 score of
around 0.85 on the test set.

Table 3: Predictive Q8 Accuracy on
Protein Secondary Structure Dataset.

Method Accuracy

Linear CRF 0.614
LogitBoost 0.710
TreeCRF 0.718
GBCRF 0.722
SC-GSN [Zhou and Troyanskaya, 2014] 0.711
SC-GSN with “kick-start” 0.721

6.2 Handwriting Character Recognition

We also evaluate our method on a handwriting recog-
nition dataset2. The dataset consists of 6877 words
and corresponds to around 52 thousand handwritten
characters [Kassel, 1995, Taskar et al., 2004], each rep-
resented by a binary pixel vector of 128 dimensions
and belongs to one of 26 alphabets. The dataset is ran-
domly split into ten folds for cross validation. We train
the models on nine folds, test on the remaining fold,
and use the cross validation error to compare the meth-
ods. The experimental results are shown in Table 2.
Both our method and TreeCRF outperforms CRF with
linear potential functions, indicating the advantage of
introducing a non-linear potential functions into the
CRF on this dataset. The gap between LogitBoost and
CRF models suggests the importance of incorporating
structure information of the outputs into the model.
Our results are also comparable to NeuroCRF [Do and
Artieres, 2010], which uses a deep neural network as a
potential function whose weights are initialized using a
Restricted Boltzmann Machine.

6.3 Protein Secondary Structure Prediction

We also conduct an experiment on protein secondary
structure prediction. The task is to predict 8-state sec-
ondary structure labels for a given amino-acid sequence
of a protein. We use the protein secondary structure
data-set recently introduced by Zhou and Troyanskaya
[2014], which is the largest publicly available protein
secondary structure prediction dataset. The dataset
contains 6128 proteins, with average sequence length
around 208. We use exactly the same features and
data split step as Zhou and Troyanskaya [2014]. The
resulting data set contains 5600 sequences as training
set, 256 sequences as validation set and 272 sequences
as test set. Each position of the protein sequence
contains 46 dimension features (22 for PSSM, 22 for
sequence and 2 for terminals) for prediction. To train
the models, we take the concatenation of feature vec-
tors within 3 positions of the target position as input
to the node potential, resulting in 322 input features
in each position.

2http://www.seas.upenn.edu/~taskar/ocr/

http://www.seas.upenn.edu/~taskar/ocr/
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Figure 1: Convergence of GBCRF on hand written character dataset. (a) Convergence comparison between
GBCRF and TreeCRF, with shrinkage rate of both algorithm set to 1, showing GBCRF converges faster than
TreeCRF; (b) Evolution of different γ estimations on the CRF model in each round based on 500 sequences. Our
mixing rate based estimation has the same trend as the exact brute force estimation, and provides a much tighter
estimate than the length based one.

The performance of the model is measured by the accu-
racy of predictions on the test set (denoted as Q8). We
train the models with parameters discovered using the
validation set, and report the results in Table 3. From
the table, we find that using trees as potential functions
leads to better performance than restricting the model
to using linear functions. Our results are comparable to
the state-of-art result in this dataset, produced by Zhou
and Troyanskaya [2014] (SC-GSN-3layer). The result is
generated by a deep convolutional generative stochastic
network model to perform secondary structure label
prediction, optimized with a “kick-start” initialization.

6.4 Convergence of GBCRF

In this section we analyze the convergence of GBCRF
on the handwritten character dataset. In Fig. 1(a),
we show the convergence of the negative log-likelihood
of GBCRF and TreeCRF. We find that GBCRF con-
verges faster than TreeCRF, demonstrating that taking
second order information into account not only gives
a theoretical guarantee of convergence, but also helps
the method converge faster in practice.

We also investigate the tightness of the γ estimates.
Figure 1(b) gives the average of different γ estimations
on models trained by GBCRF in each round. Mixing
rate based estimation is the method proposed in this
paper. We perform Brute Force estimation to com-
pute γ exactly using Eq. (9); the complexity of this
estimation is quadratic in the the number of nodes
and outputs in the CRF, and hence cannot be used
for most real-world sequences. Average length based
estimation is a naive estimation that uses twice the
number of nodes in the CRF, providing a valid esti-
mate of γ since it upper bounds Eq. (14) as we show
in Corollary 4.1. We restrict this evaluation to the
shortest 500 sequences, due to the computation cost of
brute force estimation. From the figure, we find that

mixing rate based estimation exhibits the same trend
as the brute force estimation, and is at most 2.3 times
higher than the brute force estimation. Further, the
mixing rate based bound is consistently lower than the
fixed bound computed by the length based estimation.
These results indicate that our mixing rate based esti-
mation captures the changes in the dependencies in the
model during training correctly. Hence our proposed
mixing rate based approach is indeed useful to estimate
γ efficiently.

7 CONCLUSIONS

In this paper, we present a novel gradient boosting
algorithm for CRFs. It is challenging to design an
effective gradient boosting for CRFs, primarily due to
the dense Hessian matrices caused by variable interde-
pendencies. To address this concern, we use a Markov
Chain mixing rate to derive an efficiently computable
adaptive upper bound of the loss function, and con-
struct a gradient boosting algorithm that iteratively
optimizes this bound. The resulting algorithm can
be viewed as a generalization of LogitBoost to CRFs,
thus introducing non-linearity in CRFs with only an
additional log factor to the complexity. Experimental
results demonstrate that our method is both efficient
and effective. As future work, it will be important to
investigate the generalization of this approach to loopy
graphical models.
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Supplementary Material

A Derivation of G and H

In this section, we derive the gradient and second order
gradient given in Eq (5). The result is the same as standard
CRF, we include the derivation here for completeness of
the paper. We can write the negative log-likelihood

l(y,x, φ) = −
m∑
i=1

φi(x)µi(y) + lnZ(x) (19)

Here Z(x) =
∑

y′∈Y exp(
∑m
i=1 φi(x)µi(y

′)). The following

equality holds for Z(x)

∂φkZ(x) =
∑
y′∈Y

exp(

m∑
i=1

φi(x)µi(y
′))

= Z(x)
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µk(y′)

Z(x)

= Z(x)E[µk]

(20)

In the calculation, φ is viewed as a vector, and partial
derivative is defined by the derivative at φ(y,x). Using this
property, we can calculate the gradient as

Gi(x) , ∂φi l(y,x, φ)

= −µi(y) +
∂φiZ(x)

Z(x)

= −µi(y) + E[µi] = pi − µi(y)

(21)

Here the last equality holds because µi(y) ∈ {0, 1}. We can
further calculate the second order gradient as

Hij(x) , ∂φiφj l(y,x, φ)

= ∂φjGi(x)

=
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µi(y
′)µj(y

′)

Z(x)

−
∑
y′∈Y

exp(
∑m
i=1 φi(x)µi(y

′))µi(y
′)

Z2(x)
∂φjZ(x)

= E[µiµj ]− E[µi]E[µj ] = pij − pipj
(22)

The hessian H is also known as Fisher information matrix.

B Proof for Lemma 2.1

Proof. The following inequality holds for γ that satisfies
the condition∑

i∈U

γiHiiδ
2
i ≥

∑
i∈U

∑
j∈U |Hij |δ2i

= 1
2

∑
i∈U

∑
j∈U |Hij |(δ2i + δ2j )

≥
∑
i∈U

∑
j∈U |Hij |δiδj

Applying it to Talyor expansion in Eq (4), we have

l(y,x, φ+ δ) = l(y,x, φ) +
∑
i∈U

δiGi(y,x)

+
1

2

∑
i∈U

∑
j∈U

|Hij |δiδj + o(δ2)

≤ l(y,x, φ) +
∑
i∈U

δiGi(y,x)

+
1

2

∑
i∈U

γiHiiδ
2
i + o(δ2).

C Proofs for Lemma 3.1 and 3.2

Proof. The proof is exactly the same for both node and
potential case, we present the proof for U to be all node
potentials here. Recall the definition of H: Hij = pij . Note

that pi and pij are short hand notations for pi , P (µi =

1|x), pij , P (µiµj = 1|x), we have

1

2pi

∑
j∈U

|Hij | =
∑
j

|pij/pi − pj |

=
∑
j∈U

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=
∑
s,k′

|P (ys = k′|yt = k,x)− P (ys = k′|x)|

=
∑
s

‖P (ys|x, yt = k)− P (ys|x)‖tv

D Proof for Lemma 3.3

Proof. Taking the fact that µi and µj are mutually exclusive
for j 6= i, we have∑

j∈M

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=|P (µi = 1|µi = 1,x)− P (µi = 1|x)|

+
∑
j 6=i

|P (µj = 1|µi = 1,x)− P (µj = 1|x)|

=|1− P (µi = 1|x)|+
∑
j 6=i

|0− P (µj = 1|x)|

=(1− P (µi = 1|x)) +
∑
j 6=i

P (µj = 1|x)

=2(1− P (µi = 1|x))

E Proof for Theorem 4.2

Proof. In this proof, we will reduce the total variation dis-
tance between joint distribution of edge states into total
variation distance of marginal distribution over nodes, as
in Theorem 4.1. Assume the edge pairs are (yt, yt+1),
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(ys, ys+1), and ys is closer to yt+1 (without loss of general-
ity), then

P (ys, ys+1|yt, yt+1,x) = P (ys+1|ys,x)P (ys|yt+1,x)

We can convert total variation by

‖P (ys, ys+1|yt, yt+1,x)− P (ys, ys+1|x)‖tv

=
∑

ys,ys+1

|P (ys, ys+1|yt, yt+1,x)− P (ys, ys+1|x)|

=
∑

ys,ys+1

P (ys+1|ys,x)|P (ys|yt+1,x)− P (ys|x)|

=
∑
ys

|P (ys|yt+1,x)− P (ys|x)|

=‖P (ys|yt+1,x)− P (ys|x)‖tv

Now the case become same as node potential, we can make
use of Corollary 3.1 bound the total variation.

‖P (ys, ys+1|yt = kt, yt+1 = kt+1,x)− P (ys, ys+1|x)‖tv
=‖P (ys|yt+1 = kt+1,x)− P (ys|x)‖tv

≤‖P (yt+1|yt+1 = kt+1,x)− P (yt+1|x)‖tv
∏

(a,b)∈Q(s,t+1)

αb,a

=[1− P (yt+1 = kt+1|x)]
∏

(a,b)∈Q(s,t+1)

αb,a

≤[1− P (yt = kt, yt+1 = kt+1|x)]
∏

(a,b)∈Q(s,t+1)

αb,a

Here the first inequality is due to Corollary 3.1. Intuitively,
this means that the total variational distance of between
two edge states, can be bounded by recursively applying
the mixing rate bound along the path between two edges.
Summing the results of (s, s+ 1) over all edges will give us
Eq. (15).
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