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Abstract

Active learning aims to reduce the required labeled data
by selecting which unlabeled instances should be labeled
next for a given model, instead of picking instances ran-
domly. To select the instances to label, most existing ap-
proaches primarily rely on some form of uncertainty in the
current predictions, as obtaining labels for these instances
is expected to be the most useful for the current model. De-
spite the success of these approaches, uncertainty sampling
does not directly evaluate what will change if an instance
is labeled. In this work, we introduce a formulation of ac-
tive learning that directly estimates this effect of adding an
instance to the training data on the model, and uses this
so called data importance to select the next instance to la-
bel. In particular, we use a recently introduced representer
point representation of the model to efficiently estimate the
importance of samples on the model predictions, and use
it for active learning by selecting points that will have the
largest impact. We evaluate our model on both synthetic
and real-world datasets, demonstrating the utility of data
importance in active learning for the limited label regime.

1. Introduction

Given that recent machine learning models often rely on
large labeled datasets, it is difficult to adapt them to novel
tasks and labels without considerable effort (and time) for
gathering labels. To quickly train machine learning mod-
els for the task of interest, active learning [8l [2, 13|] itera-
tively selects the instance to be labeled next that will be
the most informative to the current model. These active
learning methods have achieved tremendous success on a
variety of classification tasks improving their performance
using less number of labeled data.

The primary goal of active learning is to select the in-
stance that, when labeled, will be the most informative for
the current model. Estimating the effect of each instance
is difficult not only because the label of the instance is un-
known, but also because it is challenging to efficiently es-
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timate the actual effect of including the instance into the
training data. Many active learning algorithms thus primar-
ily rely on using the model uncertainty as a proxy of infor-
mativeness to the model [7, |1} [11], since getting any one
label for such instances should be informative. Although
these methods improve model performance on a limited
amount of labeled data, they are often not consistently better
than just randomly selecting which sample to label [1, 9].
The inability of uncertainty based approaches to improve
classifiers’ performance dramatically compared to random
selection on some samples might be a result of the inherent
difficulty of those samples and not their role in better classi-
fying the data points which is not distinguishable in terms of
uncertainty. As a result, there is a need for active learning
algorithms that go beyond just uncertainty and efficiently
estimate the informativeness of the samples.

In this paper, we introduce a data importance-based
batch active learning algorithm, i.e., identifying the most in-
formative samples to label at each step using their influence
on the predictions of the model. In particular, data impor-
tance of a training sample is its importance (or contribution)
for a specific target prediction. For active learning, we are
interested in choosing the most informative samples based
on their accumulative influence on the current training data.
More specifically, we choose data points that disagree with
current training samples the most using importance as our
metric. In the past few years, there have been many attempts
to provide an efficient approximation for data importance
such as influence function [S]] and Shapley values [6], how-
ever they are quite slow. Instead, we build upon the rep-
resenter point selection [[10] that estimates the influence of
each training sample on the prediction by decomposing the
output for the target as a weighted sum for each training
point, capturing their importance for the target prediction.

We evaluate our proposed methods through the follow-
ing experiments. First, on a synthetic dataset generated to
demonstrate shortcomings of random and uncertainty based
active learning algorithms, our model significantly outper-
forms these baselines. Second, we evaluate our model on
a low-label setting for CIFAR-100, demonstrating that our



approach in identifying informative samples is considerably
effective when very few labeled instances are available.

2. Importance Based Active Learning (IBAL)

Before describing data importance’s application to active
learning by identifying the most informative samples, we
first introduce the representer point selection model. Then,
we define importance score for each point, and adapt the
representer point selection to an active learning scenario.
Finally, to eliminate inherently difficult instances, we com-
bine this importance metric with a distance-based score.

Representer Point Selection As shown in Yeh et al. [10],
the output for a target sample of any classifier that has a
linear output layer and L2 regularization for that layer’s
weights can be represented by a formulation that assigns
an “importance” to each instance in the training data, i.e.:

Gy, 07) =D k(we, zi, o) (D

where ¢(.) represent the output score of model for the tar-
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a; fT f;. Further, £(z;,y;,0) denotes the loss term for any
training sample, and f;/ f; denote the model’s output before
the last layer for training sample z; and target x;, respec-
tively. This k(x¢, x;, «;) thus represents the importance of
training sample x; on the target prediction .

Importance Based Active Learning Intuitively, the most
informative samples for updating the model are the unla-
beled samples whose labeling would disagree the most with
our current model predictions. We want to estimate, for
each unlabeled data, how important it would be for the cur-
rent model, if it was in the training data. If a data point
seems to be important for the current model over existing
training points, it suggests that the data point is more simi-
lar to them, and thus adding it to the training data will have
minimal effect. To capture this intuition, we define the ag-
gregate importance of each unlabeled instance on the train-
ing data by using representer point selection and treating the
current training data as our target predictions and the pool
of unlabeled samples as our “training” data, and identify
the most informative unlabeled sample as one that is least
consistent with the training data, as:

argmin, IBAL(x;) =
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where L-set is the set of all previously labeled samples, and
C is the set of all possible classes. Further k(z¢, z;, a;]y)

denote the representer value for class y. Thus, minimiz-
ing IBAL(z;) identifies samples that disagree the most with
current labeled samples. To form the batch, we choose the
top-B samples minimizing the above equation (B is our la-
beling budget for each iteration).

Distance Score To avoid choosing samples that are both
of low influence and close to previously labeled ones, i.e.
samples that are challenging but not helpful for the model,
we introduce additional measurement of distance as:

D(z;) = argminwteL_se[d(xi, Z¢) 3)

where d measures the euclidean distance between represen-
tations of data points. In our implementation, we utilize the
encoder part of an autoencoder trained on all the samples,
to project data onto latent space. We use two CNN layers
for both the encoder and the decoder of the autoencoder.

Active Learning Objective To combine the importance
and distance scores, we first normalize the distance score
(divided by the maximum value), and then calculate the fi-
nal score for each sample as:

IBAL-D(z;) = IBAL(z;) — vD(;) “)

where « is a hyperparameter that we tune on a validation
dataset. As a result, we select the most informative data
points in each step through the following optimization:

argmin,, IBAL-D(z;) (5)
capturing both importance and distance.

3. Experiments

We evaluate our model on both a synthetic dataset for
intuitive illustration, and the commonly-used CIFAR-100
dataset for comparing with baseline methods. For our syn-
thetic dataset, we use a simple model of two linear lay-
ers with the relu activation, while for CIFAR-100, we use
resnet-18 [4] as our classifier.

Synthetic data To demonstrate the shortcomings of un-
certainty based AL, and of randomly picking points, we
generate a synthetic dataset as visualized in Figure I} We
want to capture two fundamental issues of baseline meth-
ods: (1) imbalanced data affects the efficiency of randomly
choosing samples, and (2) uncertainty based methods only
focus on samples with low certainty which might be in-
herently challenging (as opposed to poorly represented)
points. We consider 2000, 500, and 50 points for our three
classes respectively. As the baselines we consider 1) sam-
ple data points uniformly at random and 2) entropy-based
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Figure 1: Scatter plot of synthetic dataset (2 features, 3
classes) that captures the shortcomings of random sampling
(imbalanced classes) and uncertainty based active learning
(class overlap).
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Figure 2: Accuracy on synthetic dataset.

active learning representing uncertainty based approaches.
The average accuracy (over 5 different random seeds) plot
of our model is reported in Figure 2] As it shows, our
importance-based method outperforms baselines by a large
margin, demonstrating its capability in identifying informa-
tive samples more efficiently.

CIFAR-100 We also carry out additional experiments on
CIFAR-100 dataset to evaluate the performance of our
method on a real dataset. In addition to random and
entropy baselines, we also consider combining our dis-
tance score with entropy, solving the optimization problem:
argmax,, Entropy(wx;) + vD(x;). The average accuracy re-
sults (over 5 different random seeds) of the active learning
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Figure 3: Accuracy on CIFAR-100 dataset.

algorithm on CIFAR-100 are shown in Figure [3| Although
CIFAR-100 is a well-balanced dataset making it hard to im-
prove upon the random baselines, as the figure shows, us-
ing data importance to identify informative samples can be
beneficial to designing a better active learning algorithm.
Further, our final model with 250 labeled samples outper-
forms all the baselines. To show that the importance-based
measure (IBAL from Eq (2)) is qualitatively different from
uncertainty measure for active learning, we plot the normal-
ized IBAL score vs two uncertainty estimates (entropy and
classifier’s confidence) for CIAFR-100 data in Figures fa]
and[db] As it shows, clearly there is a significant difference
between these two approaches, suggesting IBAL is captur-
ing a different active learning phenomenon.

4. Conclusion and Future Work

Motivated by the need for more efficient active learning
algorithms, we present a novel approach for active learning
incorporating the sample importance. We adopt the previ-
ously introduced representer point selection to introduce a
data importance-based score for active learning and com-
bine it with diversity to develop an efficient active learn-
ing algorithm. Evaluating the accuracy performance of our
model on synthetic and real-world data with a quite limited
number of labeled samples, we demonstrate that our method
can outperform several baselines, shedding light upon the
effectiveness of combining importance and diversity.

For future work, we seek to incorporate the representer
point selection into the importance score in a more prin-
cipled manner. As for diverse sampling, we will conduct
comparisons to other methods of diversity on more datasets.
Moreover, we will analyze further on the assumptions of
our problem setup, and carry out thorough ablation studies
on the components of our proposed active learning pipeline.
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Figure 4: Scatter plots of IBAL scores versus uncertainty
estimates, on CIFAR100 dataset
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