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1.5 million mentions, 500 machines, 38% error reduction



@ Cross-Document Coreference
Problem Formulation

Graphical Model
Inference
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We want to find the best configuration according to the model,
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We want to find the best configuration according to the model,
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Computational bottlenecks:
@ Space over all e is Bell Number(n) in number of mentions

@® Evaluating model score for each E = e is O(n?)
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Advantages
e Only a small part of the model is examined for each sample

o Efficient, and scales well with model complexity
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e Only a small part of the model is examined for each sample

o Efficient, and scales well with model complexity

Disadvantages
e Proportion of good proposals is small

e Can take a very large number of samples to converge



@ Distributed Inference
Proposal Independence
Parallelization
Experiments












These two proposals can be evaluated (and accepted) in
parallel.
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© Hierarchical Models
Super-Entities
Sub-Entities
Experiments



e Random distribution may not
assign similar entities to the
same machine

e Probability that similar entities
will be assigned to the same
machine is small



Model-Based

Distribution

e Include Super-Entities

o Entities in the same super-entity
are assigned the same machine
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® e Consider an accepted move for
a mention



e lIdeally, similar mentions should
also move to the same entity

o Default proposal function does
not utilize this

e Good proposals become more
rare with larger datasets



e [nclude Sub-Entities

e Propose moves of mentions in a
sub-entity simultaneously
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Super-Entities
Entities
Sub-Entities
Mentions



Super-Entities
Entities
Sub-Entities
Mentions

Sampling: Fix variables of two levels, sample the remaining level
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@ Large-Scale Experiments



e Automatically annotated dataset
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e treat links (and context) as mentions and target as entity label

e ~1.5 million mentions
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@ Unique Strings
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coreferent
e Often used as approximate cross-document coreference
® Distributed Clustering

o Related work performs clustering on the mentions
o Distributed clustering with same distance as ours
e Subsquare is a graph-based approach [Bshouty & Long, 1ML 2010]

Pairwise B® Score
Method P/R F1 P/ R F1
Unique Strings | 30.0 / 66.7 | 41.5 | 82.7 / 43.8 | 57.3
Subsquare 38.2/49.1 | 43.0 | 87.6 /51.4 | 64.8
Our Model 442 /614 | 51.4 | 894 / 625 | 73.7
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@ represent cross-doc coreference as a graphical model
® propose a distributed inference algorithm
© improve inference with latent hierarchical variables

@ demonstrate utility on large datasets
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® propose a distributed inference algorithm
© improve inference with latent hierarchical variables

@ demonstrate utility on large datasets

Future Work:
e more scalability experiments
e study mixing and convergence properties
e add more expressive factors

e supervision: labeled data, noisy evidence
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