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• Cross-doc coreference on large datasets in a scalable way

• Perform distributed inference using MapReduce

1.5 million mentions, 500 machines, 38% error reduction
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Coreference Problem

..filmmaker Kevin Smith returns to the role of Silent Bob...

...the Lions drafted Kevin Smith, even though Smith was badly...

...backfield in the wake of Kevin Smith's knee injury, and the addition...

...were coming,'' said Dallas cornerback Kevin Smith. ''We just...

...60's and early 70's, Kevin Smith worked with...

...hip-hop is attributed to Lovebug Starski. What does it...

...more irrelevant to Kevin Smith's audacious ''Dogma'' than...
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Undirected Graphical Model

The random variables are entities (E ) and mentions (M)

For any assignment to entities (E = e), we define the model score:

p(e) ∝ exp
∑

e∈e

{ ∑
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mn
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∑
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}
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Maximum a posteriori (MAP) Inference

We want to find the best configuration according to the model,

ê = arg max
e

p(e)

= arg max
e

∑
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m,n∈e ψ
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a

+
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m∈e,n/∈e ψ
mn
r

}
Computational bottlenecks:

1 Space over all e is Bell Number(n) in number of mentions

2 Evaluating model score for each E = e is O(n2)



Maximum a posteriori (MAP) Inference

We want to find the best configuration according to the model,
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MCMC for MAP Inference

Use MCMC sampling to perform MAP Inference

1 Initial configuration: e← e0

2 Proposal Function: propose change to e to get e′

(e.g. move mention l from es to et)

3 Acceptance probability: α(e, e′) = min

(
1,

p(e′)
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MCMC for MAP Inference

Advantages

• Only a small part of the model is examined for each sample

• Efficient, and scales well with model complexity

Disadvantages

• Proportion of good proposals is small

• Can take a very large number of samples to converge
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Mutually Exclusive Proposals

These two proposals can be evaluated (and accepted) in
parallel.
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Improving the Distribution

Random Distribution

• Random distribution may not
assign similar entities to the
same machine

• Probability that similar entities
will be assigned to the same
machine is small



Improving the Distribution

Model-Based 
Distribution

• Include Super-Entities

• Entities in the same super-entity
are assigned the same machine



Super-Entities

Entities
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Within each Worker

• Consider an accepted move for
a mention



Within each Worker

• Ideally, similar mentions should
also move to the same entity

• Default proposal function does
not utilize this

• Good proposals become more
rare with larger datasets



Within each Worker

• Include Sub-Entities

• Propose moves of mentions in a
sub-entity simultaneously



Sub-Entities
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Hierarchical Representation

Super-Entities
Entities

Mentions

Sub-Entities

Sampling: Fix variables of two levels, sample the remaining level
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Wikipedia Link Data

• Automatically annotated dataset
without compromising on label quality

• extract links that point to pages on Wikipedia

BEIJING, Feb. 21— Kevin Smith, who played the god of war in the "Xena"...

The filmmaker Kevin Smith returns to the role of Silent Bob...

...during the late 60's and early 70's, Kevin Smith worked with several local...

...the term hip-hop is attributed to Lovebug Starski. What does it actually mean...

Nothing could be more irrelevant to Kevin Smith's audacious ''Dogma'' than ticking off...

Lovebug_Starski

Kevin_Smith

Kevin_Smith_(New_Zealand_Actor)

• treat links (and context) as mentions and target as entity label

• ∼1.5 million mentions
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Large-Scale Experiments

Baselines

1 Unique Strings
• Mention with identical mention strings are considered

coreferent
• Often used as approximate cross-document coreference

2 Distributed Clustering
• Related work performs clustering on the mentions
• Distributed clustering with same distance as ours
• Subsquare is a graph-based approach [Bshouty & Long, ICML 2010]

Method
Pairwise B3 Score

P/ R F1 P/ R F1
Unique Strings 30.0 / 66.7 41.5 82.7 / 43.8 57.3

Subsquare 38.2 / 49.1 43.0 87.6 / 51.4 64.8
Our Model 44.2 / 61.4 51.4 89.4 / 62.5 73.7
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Conclusions

1 represent cross-doc coreference as a graphical model

2 propose a distributed inference algorithm

3 improve inference with latent hierarchical variables

4 demonstrate utility on large datasets

Future Work:

• more scalability experiments

• study mixing and convergence properties

• add more expressive factors

• supervision: labeled data, noisy evidence
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