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Abstract
Understanding why machine learning models
behave the way they do empowers both system
designers and end-users in many ways: in model
selection, feature engineering, in order to trust
and act upon the predictions, and in more intuitive
user interfaces. Thus, interpretability has become
a vital concern in machine learning, and work
in the area of interpretable models has found re-
newed interest. In some applications, such models
are as accurate as non-interpretable ones, and thus
are preferred for their transparency. Even when
they are not accurate, they may still be preferred
when interpretability is of paramount importance.
However, restricting machine learning to inter-
pretable models is often a severe limitation. In this
paper we argue for explaining machine learning
predictions using model-agnostic approaches. By
treating the machine learning models as black-
box functions, these approaches provide crucial
flexibility in the choice of models, explanations,
and representations, improving debugging, com-
parison, and interfaces for a variety of users and
models. We also outline the main challenges for
such methods, and review a recently-introduced
model-agnostic explanation approach (LIME) that
addresses these challenges.

1. Introduction
As machine learning becomes a crucial component of an
ever-growing number of user-facing applications, inter-
pretable machine learning has become an increasingly
important area of research for a number of reasons. First,
as humans are the ones who train, deploy, and often use the
predictions of machine learning models in the real world, it
is of utmost importance for them to be able to trust the model.
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Apart from indicators such as accuracy on sample instances,
a user’s trust is directly impacted by how much they can
understand and predict the model’s behavior, as opposed
to treating it as a black box. Second, a system designer
who understands why their model is making predictions is
certainly better equipped to improve it by means of feature
engineering, parameter tuning, or even by replacing the
model with a different one. Lastly, even in lower stakes
domains such as movie or book recommendations, getting a
rationale such as “you will probably like this book because
of your interest in Russian Literature” makes the model
much more useful to the users, and more likely to be trusted.
Thus there is a crucial need to be able to explain machine
learning predictions, i.e. provide users a rationale for why a
prediction was made using textual and visual components
of the data, and/or producing counter-factual knowledge of
what would happen were the components different.

The prevailing solution to this explanation problem is to
use so called “interpretable” models, such as decision trees,
rules (Letham et al., 2015; Wang & Rudin, 2015), additive
models (Caruana et al., 2015), attention-based networks (Xu
et al., 2015), or sparse linear models (Ustun & Rudin, 2015).
Instead of supporting models that are functionally black-
boxes, such as an arbitrary neural network or random forests
with thousands of trees, these approaches use models in
which there is the possibility of meaningfully inspecting
model components directly — e.g. a path in a decision tree,
a single rule, or the weight of a specific feature in a linear
model. As long as the model is accurate for the task, and
uses a reasonably restricted number of internal components
(i.e. paths, rules, or features), such approaches provide
extremely useful insights.

An alternative approach to interpretability in machine
learning is to be model-agnostic, i.e. to extract post-hoc
explanations by treating the original model as a black
box. This involves learning an interpretable model on the
predictions of the black box model (Craven & Shavlik, 1996;
Baehrens et al., 2010), perturbing inputs and seeing how
the black box model reacts (Strumbelj & Kononenko, 2010;
Krause et al., 2016), or both (Ribeiro et al., 2016).
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In this position paper, we argue for separating explanations
from the model (i.e. being model agnostic). The summary
of our position is that restricting the space of models to be
interpretable is a constraint that results in less flexibility,
accuracy, and usability. We develop this position with
examples, while also describing the inherent challenges
in model agnosticism. Finally, we review the recently-
introduced LIME approach (Ribeiro et al., 2016), and
discuss how it provides many of the desirable characteristics
for model-agnostic explanations.

2. A Case for Model Agnosticism
In this section, we make a case for model-agnostic inter-
pretability, as opposed to just using interpretable models.

2.1. Model Flexibility

For most real-world applications, it is necessary to train
models that are accurate for the task, irrespective of how
complex or uninterpretable the underlying mechanism may
be. We can observe this ideology manifesting with the
increasing commonplace deployment of uninterpretable
deep neural architectures for a wide variety of tasks.

Interpretable models for such tasks remain unsatisfying;
such models are inherently crippled by the need to be
understandable, being susceptible to the limited “perception
budget” (Miller, 1956) of the users. This trade-off between
model flexibility and interpretability (Freitas, 2014) implies
one cannot use a model whose behavior is very complex, yet
expect humans to fully comprehend it globally. For example,
for a task such as predicting the sentiment of a sentence,
producing an accurate model that is understandable seems
like an unfeasible task. The size of the vocabulary alone
makes it impossible for a short set of rules, a decision tree, or
an additive model to be sufficiently accurate, not to mention
more complex word interactions such as negation. Tasks
that involve sensory data, such as audio and images, also
suffer from the same problem: for a model to be useful, it
must be sufficiently flexible to handle the data complexity.

In model-agnostic interpretability, the model is treated as a
black box. The separation of interpretability from the model
thus frees up the model to be as flexible as necessary for the
task, enabling the use of any machine learning approach -
including, for example, arbitrary deep neural networks. It
also allows for the control of the complexity-interpretability
trade-off (see next section), or “failing gracefully” if an
interpretable explanation is not possible.

2.2. Explanation Flexibility

Different kinds of explanations meet different information
needs. In some cases, users may only care about positive
evidence towards a certain prediction (e.g. which part of an

image is most responsible for the prediction), while in other
instances knowing the negative evidence may be useful
(e.g. in debugging a classifier). Yet in other cases, the
information need may be of counter-factuals, e.g. how the
model would behave if certain features had different values.
Different users may also be able to handle different kinds
of explanations; a user trained in statistics may be able to
understand a Bayesian network, while a linear model is
more intuitive to the layman. Even if the explanation type
is kept fixed, users may tolerate different granularities in
different situations. For example, Freitas (2014) notes a case
where 41 rules are considered overwhelming, and contrasts
it to another user who patiently analyzed 29,050 rules.

Most interpretable models are, however, restricted in
what explanations are possible, be it a prototype (Kim
et al., 2014), a set of rules (Letham et al., 2015) or line
graphs (Caruana et al., 2015). Further, other constraints
on interpretability, such as granularity, also have to be set
a priori (e.g. max number of rules). On the other hand,
by keeping the model separate from the explanations, one
is able to tailor the explanation to the information need,
while keeping the model fixed. If it is possible to measure
how faithful the explanation is to the original model, one
can effectively control the trade-off between fidelity and
interpretability, as favored by Freitas (2014). Such ap-
proaches may also be able to provide multiple explanations
of different types to the user, perhaps automatically picking
the one with the highest faithfulness. Thus, by being
model-agnostic, the same model can be explained with
different types of explanations, and different degrees of
interpretability for each type of explanation.

2.3. Representation Flexibility

In domains such as images, audio and text, many of
the features used to represent instances in state-of-the-art
solutions are themselves not interpretable. Unsupervised
feature learning produces representations such as word
embeddings (Mikolov et al., 2013), or the so-called deep
features (Zhou et al., 2014). While an interpretable
model trained on such features is still uninterpretable,
model-agnostic approaches can generate explanations using
different features than the one used by the underlying model.
Thus, even if the model is using word embeddings, the
explanations can be in terms of words, for example.

2.4. Lower Cost to Switch

Switching models is not an uncommon operation in machine
learning pipelines. If one commits to using an interpretable
model, one is “locked-in” to a particular model and a
particular kind of explanations - even if newer, more
accurate models are developed. Even when the switch is
from one interpretable model to another, users may have to
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be re-trained in understanding the new explanations, and the
model’s utility may decrease due to cognitive overhead. In
contrast, if one uses model-agnostic explanations, switching
the underlying model for a new one is trivial, while the way
in which the explanations are presented is maintained.

2.5. Comparing Two Models

When deploying machine learning in the real world, a
system designer often has to decide between one or more
contenders, and an incumbent model. This comparison is
hard to do if any of the systems are using interpretable
models, while others are not. Further, even if all of the
models are interpretable, it may still be difficult to compare
the insights gained from each if the underlying explanations
are different in their representation - for example comparing
a rule-based model with a tree-based model. It is also not
clear what to do if one of the contenders is less accurate
but more interpretable, or vice versa. With model-agnostic
explanations, the models being compared can be explained
using the same techniques and representations.

3. Challenges for Model-agnostic
Explanations

While we have made a case for model agnosticism, this
approach is not without its challenges. For example,
getting a global understanding of the model may be hard
if the model is very complex, due to the trade-off between
flexibility and interpretability. To make matters worse, local
explanations may be inconsistent with one another, since a
flexible model may use a certain feature in different ways
depending on the other features. In Ribeiro et al. (2016)
we explained text models by selecting a small number
of representative and non-redundant individual prediction
explanations obtained via submodular optimization, similar
in spirit to showing prototypes (Kim et al., 2014). However,
it is unclear on how to extend this approach to domains such
as images or tabular data, where the data itself is not sparse.

In some domains, exact explanations may be required (e.g.
for legal or ethical reasons), and using a black-box may
be unacceptable (or even illegal). Interpretable models
may also be more desirable when interpretability is much
more important than accuracy, or when interpretable models
trained on a small number of carefully engineered features
are as accurate as black-box models.

Another challenge for model-agnostic explanations is to be
actionable. Using a white box makes it easier to incorporate
user feedback in systems like iBCM (Kim et al., 2015), or
injecting logic into matrix factorization (Rocktaschel et al.,
2015). Feature labeling (Druck et al., 2008) or annotator
rationales (Zaidan & Eisner, 2008) are other forms of
feedback that should be supported for explanations. A basic

form of feature engineering (removing bad features) via
explanations has been shown to be effective (Ribeiro et al.,
2016), but incorporating more powerful forms of feedback
from the users is still a challenging research direction, in
particular while remaining model-agnostic.

4. Local Interpretable Model-agnostic
Explanations (LIME)

We now briefly review LIME (Ribeiro et al., 2016), and dis-
cuss how it maintains model-agnosticism, while addressing
some of the challenges that are described in the previous
section. We denote x ∈ Rd as the original representation
of an instance being explained, and we use x′ ∈ Rd′

to
denote a vector for its interpretable representation. As
exemplified before, x may be a feature vector containing
word embeddings, with x′ being the bag of words.

LIME’s goal is to identify an interpretable model over
the interpretable representation that is locally faithful to
the classifier. Even though an interpretable model may
not be able to approximate the black box model globally,
approximating it in the vicinity of an individual instance may
be feasible. Formally, the explanation model is g : Rd′ →
R, g ∈ G, where G is a class of potentially interpretable
models, such as linear models, decision trees, or rule lists,
i.e. given a model g ∈ G, we can present it to the user
as an explanation with visual or textual artifacts. As noted
before, not every g ∈ G is simple enough to be interpretable
- thus we let Ω(g) be a measure of complexity (as opposed to
interpretability) of g, which may be either a soft constraint
(e.g. the depth of a tree, or the number of non-zeros in a
linear model) or a hard constraint (e.g. ∞ if the depth or the
number of non-zeros is above a certain threshold).

Let the model being explained be f : Rd → R, e.g. in
classification f(x) is the probability that x belongs to a
certain class. We further use Πx(z) as a proximity measure
between an instance z to x, so as to define locality around x.
Finally, let L(f, g,Πx) be a measure of how unfaithful g is
in approximating f in the locality defined by Πx. In order
to ensure both interpretability and local fidelity, we must
minimize L(f, g,Πx) while having Ω(g) be low enough to
be interpretable by humans. The explanation ξ(x) produced
by LIME is obtained by solving:

ξ(x) = argmin
g∈G

L(f, g,Πx) + Ω(g) (1)

This formulation can be used with different explanation
families G, fidelity functions L, and complexity measures
Ω. We estimate L by generating perturbed samples around
x, making predictions with the black box model f and
weighting them according to Πx. The intuition for this
is presented in Figure 1, where a globally complex model is
explained using a locally-faithful linear explanation.
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Figure 1. Toy example to present intuition for LIME. The black-
box model’s complex decision function f (unknown to LIME)
is represented by the blue/pink background. The bright bold red
cross is the instance being explained. LIME samples instances,
gets predictions using f , and weighs them by the proximity to the
instance being explained (represented here by size). The dashed
line is the explanation that is locally (but not globally) faithful.

Discussion

Some approaches are model agnostic by approximating the
black box model by an interpretable one globally (Craven
& Shavlik, 1996; Baehrens et al., 2010; Sanchez et al.,
2015). Global explanation, however, are often either not
interpretable, or too simplistic to represent the original
model. LIME’s focus on explaining individual predictions
allows more accurate explanations while retaining model
flexibility. For example, it is easy to explain why sentences
such as “This is not bad.” have a positive sentiment, even if
we are not able to explain the complete sentiment model.

For explanation flexibility, the practitioner has complete
control over G and Ω(g); in Ribeiro et al. (2016), for exam-
ple, we use very sparse linear models. This representation
is simple enough for non-expert Mechanical Turkers to
perform model selection and feature engineering effectively
for complex, uninterpretable models. Furthermore, since
LIME estimates the local fidelity through L, we can directly
control the interpretability of the explanations (e.g. using as
many words as needed to maintain faithfulness) or whether
to only display interpretable explanations when they are
accurate to the black box model. LIME also supports
exploring multiple explanation families G simultaneously,
and picking the one with highest faithfulness.

Representation flexibility is built into LIME, with the dis-
tinction between original x and interpretable representation
x′. In Ribeiro et al. (2016), we explain models trained
on on word embeddings by using words as interpretable
representation, and a neural network trained on raw pixels
by using contiguous super-pixels as x′.

We demonstrate the small switching costs of LIME by
explaining a wide variety of models (random forests, SVMs,
neural networks, linear models, and nearest neighbors)
using the same type of explanations. We also demonstrate
LIME’s utility for model comparison by enabling non-expert

(a) Logistic Regression trained on unigrams

(b) LSTM trained on sentence embeddings.

Figure 2. Explaining sentiment predictions for the sentence “This
is not bad.”, using different models and representations

Mechanical Turk users to select which of two competing
models would generalize better using the explanations.

As a final illustration, we explain the predictions two
sentiment analysis classifiers on the sentence “This is not
bad.”, using the class of linear models as G. The classifiers
vary wildly in complexity and underlying representation
- one is a logistic regression trained on unigrams, while
the other an LSTM neural network trained on sentence
embeddings (Wieting et al., 2015). Explanations, given in
terms of words (and their associated weights in a bar chart)
in Figure 2, demonstrate that completely different classifiers
can be described in a unified, interpretable manner. In Figure
2(b), the explanation assigns positive weight to both “not”
and “bad”, as only the conjunction is responsible for the
LSTM’s positive prediction (even though interactions are
not modeled explicitly).

5. Conclusion
Although interpretable models provide crucial insight into
why predictions are made, they impose restrictions on the
model, representation (features), and the expertise of the
users. We argued that model-agnostic explanation systems
provide a generic framework for interpretability that allows
for flexibility in the choice of models, representations, and
the user expertise. We outlined a number of challenges
that need to be addressed for model-agnostic approaches;
some of which are addressed by the recently introduced
LIME (Ribeiro et al., 2016), while others are left as future
work. We thus conclude that model-agnostic interpretability
is a key component in making machine learning more
trustworthy - and ultimately, more useful.
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