Monte Carlo MCMC

Efficient Inference by Approximate Sampling

Sameer Singh, Michael Wick, Andrew McCallum




Overview

MCMC is a popular choice for inference in NLP
— But is often slow in practice

Existing work has focused on:

— Modifying the model for faster sampling

— Generating multiple samples simultaneously
— Improving quality of each sample

Instead, we generate “approximate samples”
— But each sample is much faster

Results in up to 13 times speedup!



Background
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Markov Chain Monte Carlo
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Markov Chain Monte Carlo

* Pros: Low memory requirement, etc.

* Generating a sample is often fast
— Depends only on factors involved in a proposal

* Unfortunately, sometimes this is a bottleneck
1. If a variable neighbors many factors
2. A proposal changes many variables
3. Scoring a factor is slow (expensive features)



Example: Relation Extraction




Monte Carlo MCMC



Approximating Sampling

* Acceptance ratio involves partial model scores
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Estimate the scores by
sub-sampling the factors:
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Uniform Sampling

* Pick the subset S uniformly
— Proportion of factors to pickis p

* Scoring is 1/p times faster

— But with lower p, more samples are needed




Limitations of Uniform Sampling

* Performance is sensitive to parameter p
— Which has to be manually specified

* Different proposals may prefer different p’s
— Depends on the variance of the factor scores
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Confidence-Based Stopping

 Sample uniformly as before
— Compute 95% confidence interval around mean

 We want to sample till reasonably confident
— If, width of interval < i, stop.

— Else, continue sampling

* Need to include finite population control (fpc)
— Since S is a substantial subset of F’



Confidence-Based Stopping
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Experiments



Synthetic Data

e Binary Classification Model
— 100 factors

* Generate Samples

— Compute marginals from them

— Compare error to exact

* Similar operation as Gibbs

— Ignore Burn-in and Thinning el




Synthetic Data
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Entity Resolution Model

* Or Clustering...

* Used for Entity Disambiguation, Coreference Resolution,
Record De-duplication, etc.




MCMC for Entity Resolution

* |nitialize to any valid configuration




MCMC for Entity Resolution

* Proposal moves a single data point..




MCMC for Entity Resolution

* Score factors that neighbor the moved point
— And the points in the old and new clusters




MCMC for Entity Resolution

* Pros:
— Allows us to enforce transitivity implicitly
— May not compare all pairs of points

— Scoring a proposal is linear in cluster size

* Cons:
— Scoring a proposal is linear in cluster size!!!
(Fortunately, points in a cluster are redundant)



Cora Citation Matching

e 1295 citation strings that refer to 134 papers

Yoav Freund, H. Sebastian Seung, Eli Shamir, Naftali Tishby. Information, prediction, and
query by committee, NIPS92, p. 1993 483-490

Y. freund, H.S seung, E. shamir, and N. tishby. Accelerating learning using query by

Committee. Proceedings of the 1992 conf. on neural informations processing systems
(to appear), 1993

< 10 citations per paper on average

Use features based on similarity of fields
— Author, Title and Venue
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Large-Scale Author Coreference

* 5 million authors from DBLP BibTex entries

@techreport{

author=S. Palacharia, N.P.Jouppi, J.E.Smith,
title= Quantifying the complexity of superscalar processors
institution= University of Wisconsin, year=1996}

@inproceedings{
author= Aggarwal, Ranganathan, Jouppi, and Smith,
title= Building High Availability Systems with Commodity Processors,
booktitle=Int. Symposium on Computer Architecture, year=2007}

* |Include 2,833 labeled mentions from Rexa

 Use BibTex context as the features
— First/last names, title BOW, title topics, coauthors



Speedup to obtain 80% B3
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Limitations and Future Work

Is fairly naive about factor selection

— Assumes factors are distributed normally
— Does not (re)use factor scores

— Future: Score-aware factor selection

Theoretical Issues

— Unwanted bias in the samples, introduces error

— Future: Reweight samples to remove the bias
Dynamic Threshold

— Ideal threshold may depend on the state of inference
— Future: Reduce approximation as inference proceeds

Evaluate on more tasks



Summary

Examined scenarios where MCMC is slow

Proposed stochastic evaluation of samples
— Uniform Sampling
— Confidence-Based Sampling

Demonstrated significant speedups
— For marginal inference on synthetic data
— Up to 13x speedup on large-scale entity resolution

Approach is general and easy to code



Thanks!

Sameer Singh, Michael Wick, Andrew McCallum

sameer@cs.umass.edu
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