Monte Carlo MCMC Efficient Inference by Approximate Sampling

Sameer Singh, Michael Wick, Andrew McCallum

Overview

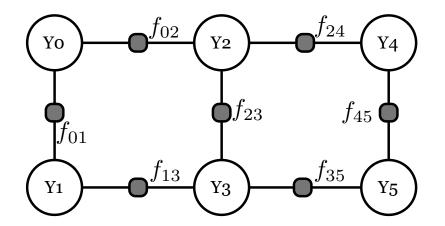
- MCMC is a popular choice for inference in NLP
 - But is often slow in practice
- Existing work has focused on:
 - Modifying the model for faster sampling
 - Generating multiple samples simultaneously
 - Improving quality of each sample
- Instead, we generate "approximate samples"
 - But each sample is much faster
- Results in up to 13 times speedup!

Background

Graphical Models

- Factor Graphs
- Variables Y
- Factors F
- Score of a configuration:

$$\psi(\mathbf{Y} = \mathbf{y}) = \sum_{f \in \mathbf{F}} f(\mathbf{y}_f)$$



• Probability:

$$p(\mathbf{Y}=\mathbf{y}) = \frac{1}{Z} \exp \psi(\mathbf{y})$$

Markov Chain Monte Carlo

Yo

 f_{45}

- 1. Current Sample, y
- 2. Propose a move: $y \rightarrow y'$
- 3. Accept with Probability α

$$\alpha(\mathbf{y}, \mathbf{y'}) = \frac{p(\mathbf{y'})}{p(\mathbf{y})}$$

$$= \exp \psi(\mathbf{y'}) - \psi(\mathbf{y})$$

$$= \exp \psi(\mathbf{y'}) - \psi(\mathbf{y})$$

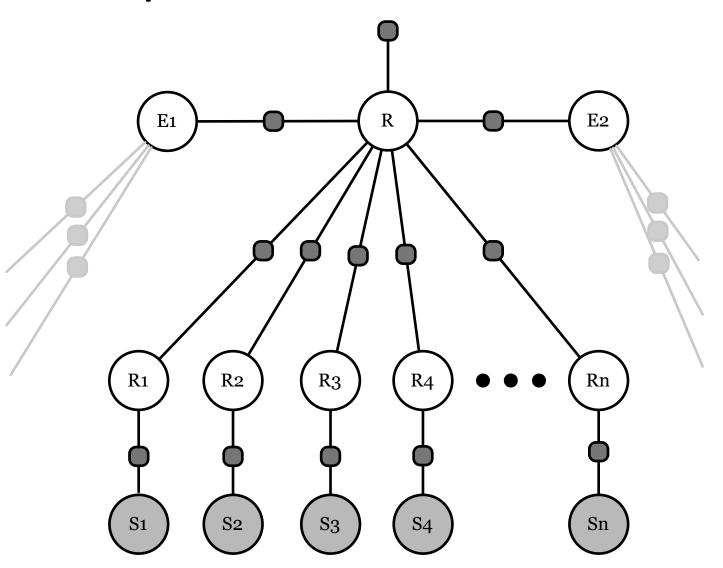
$$= \exp \psi(\mathbf{y'}) - \psi(\mathbf{y})$$

Current sample ← y'

Markov Chain Monte Carlo

- Pros: Low memory requirement, etc.
- Generating a sample is often fast
 - Depends only on factors involved in a proposal
- Unfortunately, sometimes this is a bottleneck
 - 1. If a variable neighbors many factors
 - 2. A proposal changes many variables
 - 3. Scoring a factor is slow (expensive features)

Example: Relation Extraction



Monte Carlo MCMC

Approximating Sampling

Acceptance ratio involves partial model scores

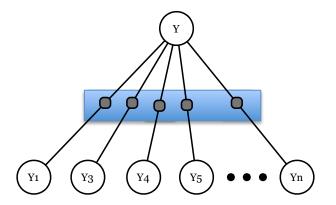
 $f \in \mathbf{F}$

$$\alpha(\mathbf{y}, \mathbf{y'}) = \exp \psi(\mathbf{y'}/\mathbf{y}) - \psi(\mathbf{y}/\mathbf{y'})$$

$$\psi(\mathbf{y}/\mathbf{y'}) = \sum f(\mathbf{y}) = |\mathbf{F'}| \mathbb{E}_{\mathbf{F'}} f(\mathbf{y})$$

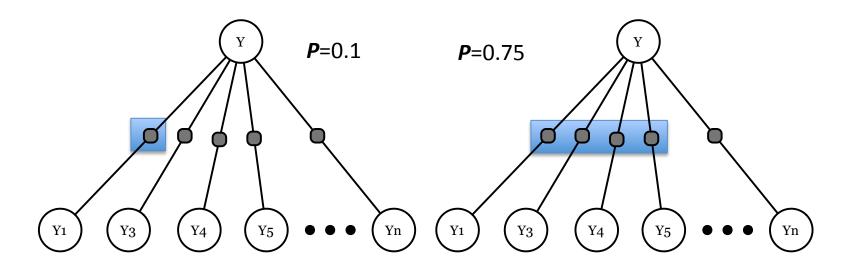
 Estimate the scores by sub-sampling the factors:

$$\mathbf{S} \subseteq \mathbf{F}'; \ \psi_{\mathbf{S}}(\mathbf{y}/\mathbf{y}') = |\mathbf{F}'| \mathbb{E}_{\mathbf{S}} f(\mathbf{y})$$



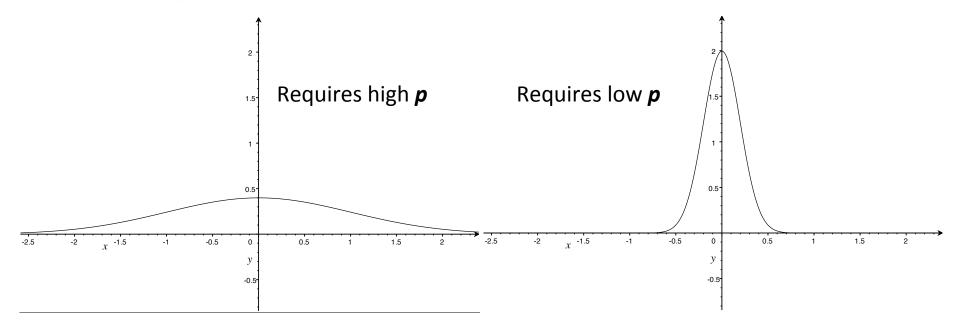
Uniform Sampling

- Pick the subset S uniformly
 - Proportion of factors to pick is p
- Scoring is 1/p times faster
 - But with lower p, more samples are needed



Limitations of Uniform Sampling

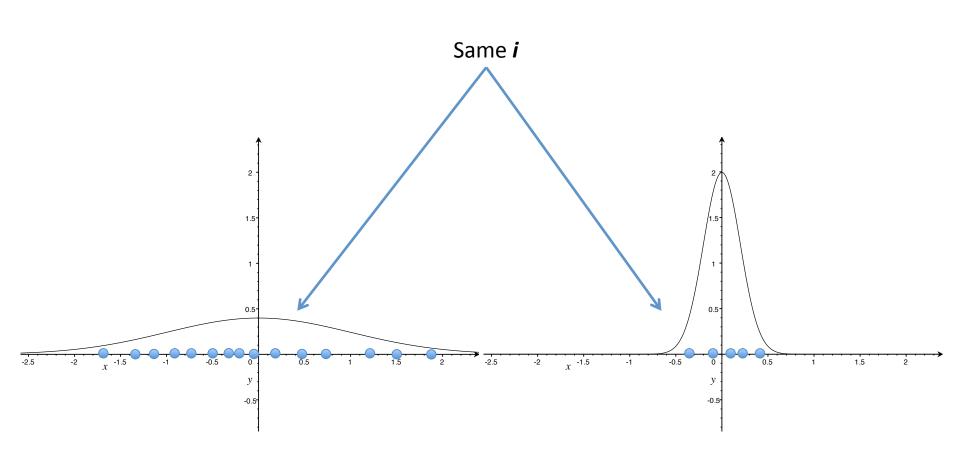
- Performance is sensitive to parameter p
 - Which has to be manually specified
- Different proposals may prefer different p's
 - Depends on the variance of the factor scores



Confidence-Based Stopping

- Sample uniformly as before
 - Compute 95% confidence interval around mean
- We want to sample till reasonably confident
 - If, width of interval < i, stop.</p>
 - Else, continue sampling
- Need to include finite population control (fpc)
 - Since S is a substantial subset of F'

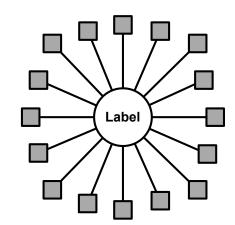
Confidence-Based Stopping

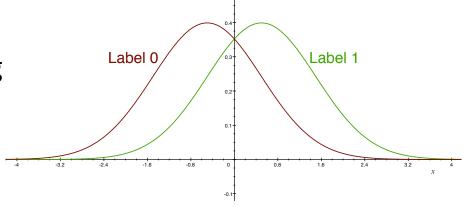


Experiments

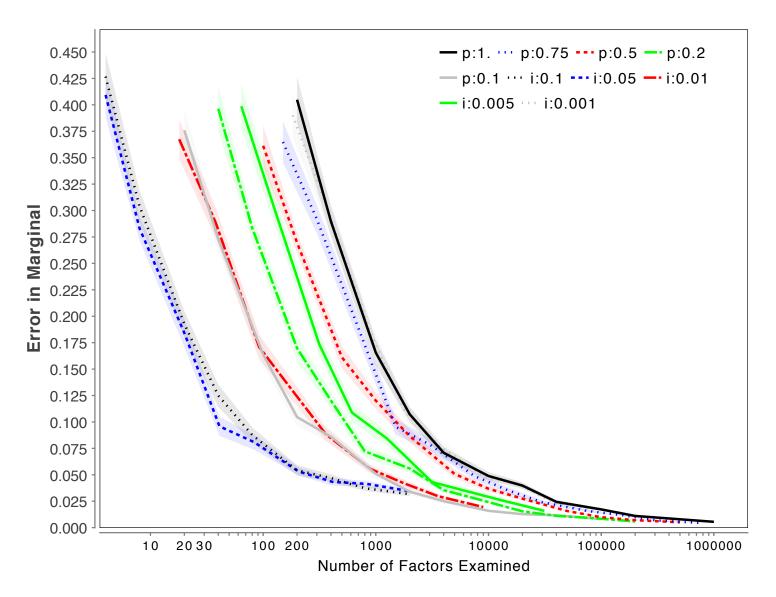
Synthetic Data

- Binary Classification Model
 - 100 factors
- Generate Samples
 - Compute marginals from them
 - Compare error to exact
- Similar operation as Gibbs
 - Ignore Burn-in and Thinning



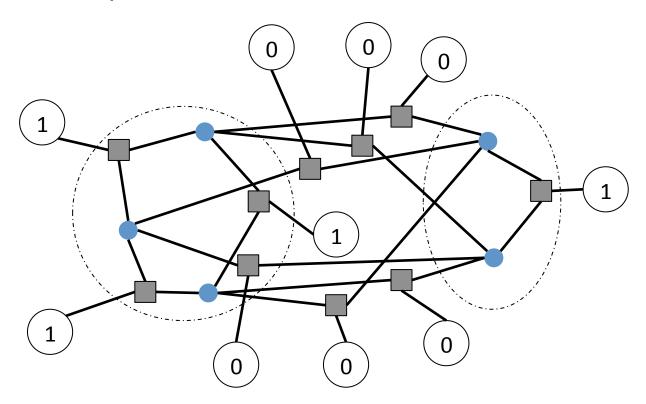


Synthetic Data

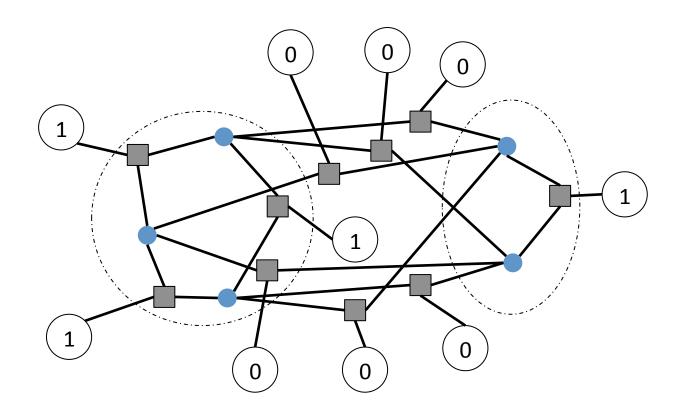


Entity Resolution Model

- Or Clustering...
- Used for Entity Disambiguation, Coreference Resolution, Record De-duplication, etc.



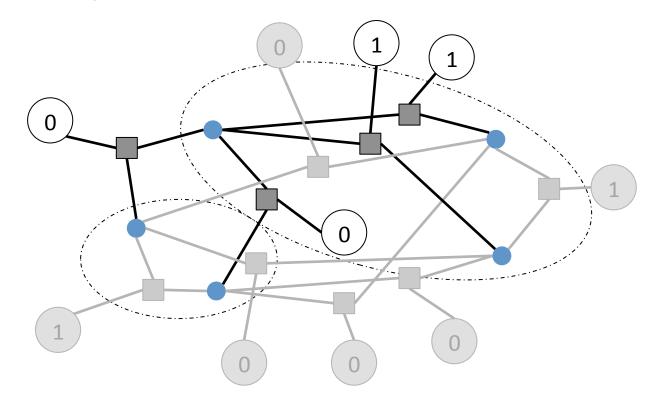
Initialize to any valid configuration



Proposal moves a single data point...



- Score factors that neighbor the moved point
 - And the points in the old and new clusters



Pros:

- Allows us to enforce transitivity implicitly
- May not compare all pairs of points
- Scoring a proposal is linear in cluster size

Cons:

Scoring a proposal is linear in cluster size!!!
 (Fortunately, points in a cluster are redundant)

Cora Citation Matching

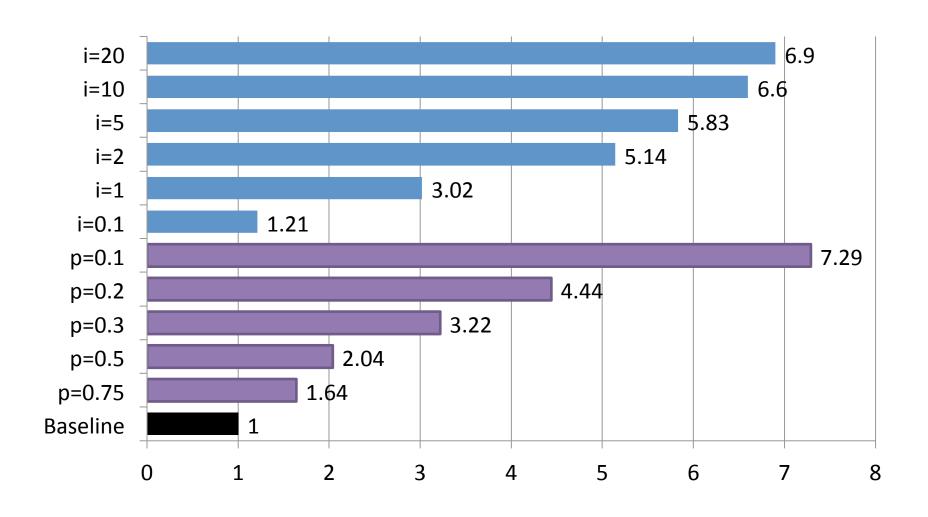
1295 citation strings that refer to 134 papers

Yoav Freund, H. Sebastian Seung, Eli Shamir, Naftali Tishby. Information, prediction, and query by committee, NIPS92, p. 1993 483-490

Y. freund, H.S seung, E. shamir, and N. tishby. Accelerating learning using query by Committee. Proceedings of the 1992 conf. on neural informations processing systems (to appear), 1993

- < 10 citations per paper on average
- Use features based on similarity of fields
 - Author, Title and Venue

Speedup to obtain 90% B³



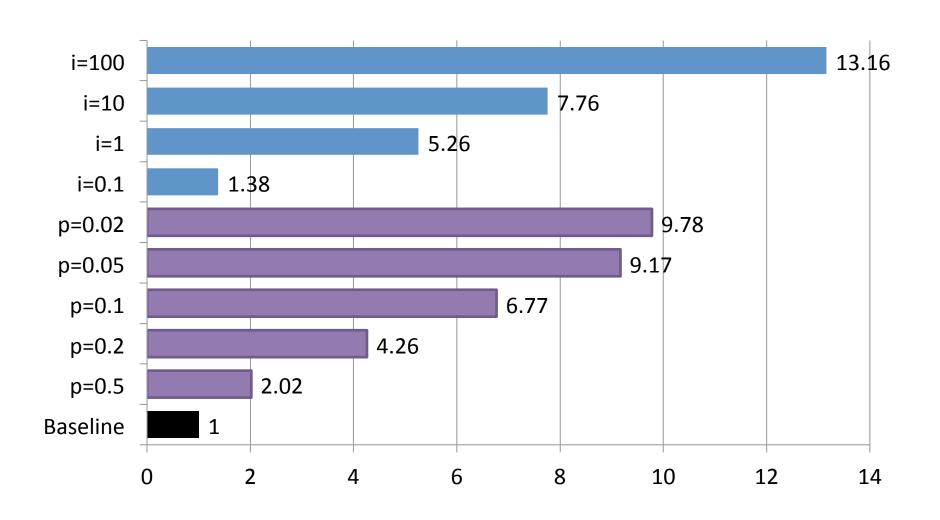
Large-Scale Author Coreference

5 million authors from DBLP BibTex entries

```
@techreport{
   author= S. Palacharia, N.P.Jouppi, J.E.Smith,
   title= Quantifying the complexity of superscalar processors
   institution= University of Wisconsin, year=1996}
@inproceedings{
   author= Aggarwal, Ranganathan, Jouppi, and Smith,
   title= Building High Availability Systems with Commodity Processors,
   booktitle=Int. Symposium on Computer Architecture, year=2007}
```

- Include 2,833 labeled mentions from Rexa
- Use BibTex context as the features
 - First/last names, title BOW, title topics, coauthors

Speedup to obtain 80% B³



Limitations and Future Work

- 1. Is fairly naïve about factor selection
 - Assumes factors are distributed normally
 - Does not (re)use factor scores
 - Future: Score-aware factor selection
- 2. Theoretical Issues
 - Unwanted bias in the samples, introduces error
 - Future: Reweight samples to remove the bias
- 3. Dynamic Threshold
 - Ideal threshold may depend on the state of inference
 - Future: Reduce approximation as inference proceeds
- 4. Evaluate on more tasks

Summary

- Examined scenarios where MCMC is slow
- Proposed stochastic evaluation of samples
 - Uniform Sampling
 - Confidence-Based Sampling
- Demonstrated significant speedups
 - For marginal inference on synthetic data
 - Up to 13x speedup on large-scale entity resolution
- Approach is general and easy to code

Thanks!

Sameer Singh, Michael Wick, Andrew McCallum

sameer@cs.umass.edu

Appendix

