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Abstract

Natural language instruction following tasks serve as a
valuable test-bed for grounded language and robotics re-
search. However, data collection for these tasks is expensive
and end-to-end approaches suffer from data inefficiency.
We propose the structuring of language, acting, and visual
tasks into separate modules that can be trained indepen-
dently. Using a Language, Action, and Vision (LAV) frame-
work removes the dependence of action and vision modules
on instruction following datasets, making them more effi-
cient to train. We also present a preliminary evaluation of
LAV on the ALFRED task for visual and interactive instruc-
tion following.

1. Introduction
Many state of the art natural language systems are condi-

tioned solely on language input [5, 7, 8]. However advanced
language understanding requires that language is grounded
in vision and interaction [3, 4]. Interactive and visual in-
struction following tasks provide a test-bed for developing
methods that ground language in vision and actions. These
types of tasks are also interesting from a robotics perspec-
tive. Ideally robots that interact with humans in the real
world will support a natural language interface. Thus in-
teractive and visual natural language instruction following
tasks also work towards accomplishing this goal.

Typical approaches to instruction following tasks per-
form end-to-end learning with a deep neural network [2,
10]. However, gathering expert demonstrations paired with
natural language instructions is costly and datasets are typ-
ically small. End-to-end baselines have performed poorly
on interactive instruction following tasks, and many ap-
proaches to improve on baselines incorporate some mod-
ularization. Corona et al. [6] train separate modules for
each type of high level task to be completed (e.g., go to,
pick up), and Singh et al. [11] train a perception module
separate from their action module. However, all modules
in both of these methods are still dependent on the instruc-
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Figure 1. The Language Action Vision (LAV) framework. Mod-
ules are trained independently to minimize dependence on natural
language instructions and expert demonstrations. Items outlined
with a dotted line are suggested improvements.

tion following dataset. Recently, Saha et al. [9] introduced
a method called Modular Vision and Language (MoViLan)
that is most similar to our method. MoViLan also trains
modules independently to work together at test time, but it
is evaluated on a simpler version of the ALFRED task.

Simple end-to-end approaches for solving instruction
following tasks ignore the fact that much can be learned
about actions and vision independent of instruction datasets.
We make this separation explicit and propose a Language,
Action, and Vision (LAV) framework that can train each
module independently, thus removing the action and vision
modules’ dependence on any instruction following dataset.
Our evaluation of LAV on the ALFRED task indicates that
it is able to significantly outperform end-to-end baselines.

2. LAV Framework
Key to our LAV framework (see Figure 1) is that the ac-

tion and vision modules can be trained independently of
natural language instructions and expert trajectories. This
usually means defining a set of possible action subtasks g
and target objects o. Given the natural language instruction
xlang, the main task of the Language Module L is to iden-
tify the subtask and target object for the action and vision
modules L : xlang → o, g.

With a set of possible objects, the LAV Vision Module
V can be trained to extract state features s given visual ob-

1



servations xobs and a target object o, independent of the in-
struction following dataset V : xobs, o → s. The vision
module benefits from this independence because computer
vision datasets are typically cheaper to collect and more
plentiful than instruction following datasets. Additionally,
many instruction following tasks run in simulation making
vision datasets especially simple to collect and label.

Finally the LAV Action Module A can learn to com-
plete subtasks with arbitrary target objects in a multi-task
learning setting. Given a subtask g, target object o, and
state featues s, it learns to predict actions a to complete the
subtask A : g, o, s → a. Multi-task robot learning is a
popular research area and many approaches exist for solv-
ing this problem. For example, if the tasks are running in
a simulator, the action module can be trained via multi-task
reinforcement learning.

Note that the output from each independent module can
also augment the input to other modules to improve test time
performance as illustrated by the dotted items in Figure 1.
For example, the language module can be informed by what
objects are visible in the scene (L : xlang, s

′ → o, g where
V ′ : xobs → s′). Additionally, the language module can
use the value of the current state under a specific subtask
to determine the output with the highest chance of success
(L : xlang, v → o, g where A′ : s′ → v).

3. Evaluation

To test our LAV framework, we develop a prototype im-
plementation to evaluate on the ALFRED task [10].

3.1. Implementation

The LAV language module for our implementation is
finetuned from a T5 language model [8]. We train the model
to generate sequences of (subtask, target object) pairs based
on natural language goal instructions. The subtasks we use
consist of the seven high level actions defined by ALFRED
(pick up, place, toggle, clean, cool, heat, and slice), and the
objects consist of all of the object types used as target ob-
jects in the training set.

We train three vision networks that make up our LAV
vision module. Given an RGB observation, these networks
output an object type segmentation, a depth map, and an
obstacle indicator. All three models were trained via super-
vised learning from datasets collected from the AI2THOR
simulator. Depth maps are used in with segmentations to
estimate the relative position to a target object.

Using the target object’s position estimated by the vi-
sion module, the LAV action module first navigates toward
the target object and then executes low level actions corre-
sponding to the current subtask predicted by the language
module. Navigation is a simple depth first search around
obstacles toward the target object’s estimated position.

Test Data Seen Test Data Unseen

SR PWSR GC PWGC SR PWSR GC PWGC

Baseline 4.0 2.0 9.4 6.3 0.4 0.1 7.0 4.3
LWIT [1] 30.9 25.9 40.5 36.8 9.4 5.6 20.9 16.3
LAV 13.4 6.3 23.2 13.2 6.3 3.1 17.3 10.5

Table 1. Percent success rate (SR), path weighted success rate
(PWSR), goal condition success rate (GC), and path weighted goal
condition success rate (PWGC) from ALFRED’s public leader-
board. Seen test data indicates scenes included in the training set
but with novel tasks while unseen data used novel scenes.

SR PWSR GC PWGC

L & V Oracles 25.2 8.5 32.5 11.3
V Oracle 18.4 6.3 26.3 8.6
L Oracle 15.4 7.3 24.8 15.3
LAV 12.7 5.9 23.4 13.7

Table 2. Metrics comparing versions of LAV on ALFRED’s vali-
dation data (seen). Oracles replace a module with ground truth.

For example, after picking up a dirty bowl the language
module predicts the “clean” subtask and the “sink” target
object. The vision module identifies the sink and provides
an estimated position. The action module navigates toward
the sink. Once the estimated position is in range, the action
module performs the actions “place in sink”, “toggle sink
on”, “toggle sink off”, and “pick up bowl”.

3.2. Results

We compare our LAV framework to the ALFRED base-
line and the current state of the art (LWIT [1]) in Table
1. We also provide results when replacing our language
and vision modules with ground truth oracles in Table 2.
The LAV framework significantly outperforms the baseline
across all metrics. While it doesn’t outperform LWIT in its
current form, LAV suffers less from the transfer to novel test
scenes than LWIT does. Also note that LAV only achieves
25.2% SR while using language and vision oracles. This
indicates that the current point navigation search is a major
weak point of our implementation. We plan to replace the
current action module with a reinforcement learning agent
in the future which will further improve performance.

4. Conclusion
The LAV framework demonstrates the advantage of

training vision and action modules independent of instruc-
tion datasets. Doing so allows those modules to train on
much cheaper and more abundant data. The language mod-
ule is able to predict subtasks and target objects from in-
struction data without needing to learn vision and low level
actions as well. In the future we plan to apply LAV to other
tasks such as iGibson [13] and AI2-THOR Rearrangement
[12] and improve upon the current LAV implementation.

2



References
[1] Alfred leaderboard. https : / / leaderboard .

allenai . org / alfred / submissions / public.
Accessed: 2021-05-14. 2

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark
Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton Van Den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3674–
3683, 2018. 1

[3] Emily M Bender and Alexander Koller. Climbing towards
nlu: On meaning, form, and understanding in the age of data.
In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 5185–5198, 2020. 1

[4] Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob An-
dreas, Yoshua Bengio, Joyce Chai, Mirella Lapata, Angeliki
Lazaridou, Jonathan May, Aleksandr Nisnevich, et al. Expe-
rience grounds language. arXiv preprint arXiv:2004.10151,
2020. 1

[5] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 1

[6] Rodolfo Corona, Daniel Fried, Coline Devin, Dan Klein, and
Trevor Darrell. Modularity improves out-of-domain instruc-
tion following. arXiv preprint arXiv:2010.12764, 2020. 1

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[8] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer learn-
ing with a unified text-to-text transformer. arXiv preprint
arXiv:1910.10683, 2019. 1, 2

[9] Homagni Saha, Fateme Fotouhif, Qisai Liu, and Soumik
Sarkar. A modular vision language navigation and manipu-
lation framework for long horizon compositional tasks in in-
door environment. arXiv preprint arXiv:2101.07891, 2021.
1

[10] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan
Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,
and Dieter Fox. Alfred: A benchmark for interpreting
grounded instructions for everyday tasks. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10740–10749, 2020. 1, 2

[11] Kunal Pratap Singh, Suvaansh Bhambri, Byeonghwi Kim,
Roozbeh Mottaghi, and Jonghyun Choi. Moca: A modular
object-centric approach for interactive instruction following.
arXiv preprint arXiv:2012.03208, 2020. 1

[12] Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and
Roozbeh Mottaghi. Visual room rearrangement. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2021. 2

[13] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Mi-
cael Edmond Tchapmi, Alexander Toshev, Roberto Martı́n-

Martı́n, and Silvio Savarese. Interactive gibson benchmark:
A benchmark for interactive navigation in cluttered environ-
ments. IEEE Robotics and Automation Letters, 5(2):713–
720, 2020. 2

3

https://leaderboard.allenai.org/alfred/submissions/public
https://leaderboard.allenai.org/alfred/submissions/public

