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ABSTRACT

Answering compositional questions that require multiple steps of reasoning against
text is challenging, especially when they involve discrete, symbolic operations.
Neural module networks (NMNs) learn to parse such questions as executable
programs composed of learnable modules, performing well on synthetic visual
QA domains. However, we find that it is challenging to learn these models for
non-synthetic questions on open-domain text, where a model needs to deal with
the diversity of natural language and perform a broader range of reasoning. We
extend NMNs by: (a) introducing modules that reason over a paragraph of text,
performing symbolic reasoning (such as arithmetic, sorting, counting) over num-
bers and dates in a probabilistic and differentiable manner; and (b) proposing an
unsupervised auxiliary loss to help extract arguments associated with the events
in text. Additionally, we show that a limited amount of heuristically-obtained
question program and intermediate module output supervision provides sufficient
inductive bias for accurate learning. Our proposed model significantly outperforms
state-of-the-art models on a subset of the DROP dataset that poses a variety of
reasoning challenges that are covered by our modules.

1 INTRODUCTION

Being formalism-free and close to an end-user task, QA is increasingly becoming a proxy for gauging
a model’s natural language understanding capability (He et al., 2015; Talmor et al., 2018). Recent
models have performed well on certain QA datasets, sometimes rivaling humans (Zhang et al., 2019),
but it has become increasingly clear that they primarily exploit surface level lexical cues (Jia &
Liang, 2017; Feng et al., 2018) and compositional QA still remains a challenge. Answering complex
compositional questions against text is challenging since it requires a comprehensive understanding
of both the question semantics and the text against which the question needs to be answered. Consider
the question in Figure 1; a model needs to understand the compositional reasoning structure of the
questions, perform accurate information extraction from the passage (eg. extract lengths, kickers, etc.
for the field goals and touchdowns), and perform symbolic reasoning (eg. counting, sorting, etc.).

Semantic parsing techniques, which map natural language utterances to executable programs, have
been used for compositional question understanding for a long time (Zelle & Mooney, 1996; Zettle-
moyer & Collins, 2005; Liang et al., 2011), but have been limited to answering questions against
structured and semi-structured knowledge sources. Neural module networks (NMNs; Andreas et al.,
2016) extend semantic parsers by making the program executor a learned function composed of
neural network modules. These modules are designed to perform basic reasoning tasks and can be
composed to perform complex reasoning over unstructured knowledge.

NMNs perform well on synthetic visual question answering (VQA) domains such as CLEVR (Johnson
et al., 2017) and it is appealing to apply them to answer questions over text due to their interpretable,
modular, and inherently compositional nature. We find, however, that it is non-trivial to extend NMNs
for answering non-synthetic questions against open-domain text, where a model needs to deal with
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Figure 1: Model Overview: Given a question, our model parses it into a program composed of neural
modules. This program is executed against the context to compute the final answer. The modules
operate over soft attention values (on the question, passage, numbers, and dates). For example,
filter takes as input attention over the question (in the second quarter) and filters the output of
the find module by producing an attention mask over tokens that belong to the second quarter.

the ambiguity and variability of real-world text while performing a diverse range of reasoning. Jointly
learning the parser and executor using only QA supervision is also extremely challenging (§2.2).

Our contributions are two-fold: Firstly, we extend NMNs to answer compositional questions against
a paragraph of text as context. We introduce neural modules to perform reasoning over text using
distributed representations, and perform symbolic reasoning, such as arithmetic, sorting, comparisons,
and counting (§3). The modules we define are probabilistic and differentiable, which lets us maintain
uncertainty about intermediate decisions and train the entire model via end-to-end differentiability.

Secondly, we show that the challenges arising in learning from end-task QA supervision can be
alleviated with an auxiliary loss over the intermediate latent decisions of the model. Specifically, we
introduce an unsupervised objective that provides an inductive bias to perform accurate information
extraction from the context (§4.1). Additionally, we show that providing heuristically-obtained
supervision for question programs and outputs for intermediate modules in a program (§4.2) for a
small subset of the training data (5–10%) is sufficient for accurate learning.

We experiment on 21,800 questions from the recently proposed DROP dataset (Dua et al., 2019)
that are heuristically chosen based on their first n-gram such that they are covered by our designed
modules. This is a significantly-sized subset that poses a wide variety of reasoning challenges
and allows for controlled development and testing of models. We show that our model, which has
interpretable intermediate outputs by design, significantly outperforms state-of-the-art black box
models on this dataset. We conclude with a discussion of the challenges of pushing NMNs to the
entire DROP dataset, where some questions require reasoning that is hard to design modules for.

2 NEURAL MODULE NETWORKS

Consider the question “Who kicked the longest field goal in the second quarter?” in Figure 1.
Multiple reasoning steps are needed to answer such a question: find all instances of “field goal” in the
paragraph, select the ones “in the second quarter”, find their lengths, compute the “longest” of them,
and then find “who kicked” it. We would like to develop machine reading models that are capable of
understanding the context and the compositional semantics of such complex questions in order to
provide the correct answer, ideally while also explaining the reasoning that led to that answer.

Neural module networks (NMN) capture this intuition naturally, which makes them a good fit to solve
reasoning problems like these. A NMN would parse such a question into an executable program,
such as relocate(find-max-num(filter(find()))), whose execution against the given
paragraph yields the correct answer. These programs capture the abstract compositional reasoning
structure required to answer the question correctly and are composed of learnable modules designed
to solve sufficiently independent reasoning tasks. For example, the find module should ground the
question span “field goal” to its various occurrences in the paragraph; the module find-max-num
should output the span amongst its input that is associated with the largest length; and finally, the
relocate module should find “who kicked” the field goal corresponding to its input span.
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2.1 COMPONENTS OF A NMN FOR TEXT

Modules. To perform natural language and symbolic reasoning over different types of information,
such as text, numbers, and dates, we define a diverse set of differentiable modules to operate over
these different data types. We describe these modules and the data types in §3.

Contextual Token Representations. Our model represents the question q as Q ∈ Rn×d and the
context paragraph p as P ∈ Rm×d using contextualized token embeddings. These are outputs of
either the same bidirectional-GRU or a pre-trained BERT (Devlin et al., 2019) model. Here n and m
are the number of tokens in the question and the paragraph, respectively. Appendix §A.1 contains
details about how these contextual embeddings are produced.

Question Parser. We use an encoder-decoder model with attention to map the question into an
executable program. Similar to N2NMN (Hu et al., 2017), at each timestep of decoding, the attention
that the parser puts on the question is available as a side argument to the module produced at that
timestep during execution. This lets the modules have access to question information without making
hard decisions about which question words to put into the program.

In our model, the data types of the inputs and output of modules automatically induce a type-
constrained grammar which lends itself to top-down grammar-constrained decoding as performed by
Krishnamurthy et al. (2017). This ensures that the decoder always produces well-typed programs.
For example, if a module f1 inputs a number, and f2 outputs a date, then f1(f2) is invalid and would
not be explored while decoding. For example, if a module f1 inputs a number, and f2 outputs a date,
then f1(f2) is invalid and would not be explored while decoding. The output of the decoder is a
linearized abstract syntax tree (in an in-order traversal). See §A.2 for details.

Learning. We define our model probabilistically, i.e., for any given program z, we can compute
the likelihood of the gold-answer p(y∗|z). Combined with the likelihood of the program under the
question-parser model p(z|q), we can maximize the marginal likelihood of the answer by enumerating
all possible programs; J =

∑
z p(y

∗|z)p(z|q). Since the space of all programs is intractable, we run
beam search to enumerate top-K programs and maximize the approximate marginal-likelihood.

2.2 LEARNING CHALLENGES IN NMN FOR TEXT

As mentioned above, the question parser and the program executor both contain learnable parameters.
Each of them is challenging to learn in its own right and joint training further exacerbates the situation.

Question Parser. Our model needs to parse free-form real-world questions into the correct program
structure and identify its arguments (e.g. ”who kicked”, ”field goal”, etc.). This is challenging
since the questions are not generated from a small fixed grammar (unlike CLEVR), involve lexical
variability, and have no program supervision. Additionally, many incorrect programs can yield the
same correct answer thus training the question parser to highly score incorrect interpretations.

Program Executor. The output of each intermediate module in the program is a latent decision
by the model since the only feedback available is for the final output of the program. The absence
of any direct feedback to the intermediate modules complicates learning since the errors of one
module would be passed on to the next. Differentiable modules that propagate uncertainties in
intermediate decisions help here, such as attention on pixels in CLEVR, but do not fully solve the
learning challenges.

Joint Learning. Jointly training the parser and executor increases the latent choices available to the
model by many folds while the only supervision available is the gold answer. Additionally, joint
learning is challenging as prediction errors from one component lead to incorrect training of the other.
E.g., if the parser predicts the program relocate(find()) for the question in Fig. 1, then the
associated modules would be incorrectly trained to predict the gold answer. On the next iteration,
incorrect program execution would provide the wrong feedback to the question parser and lead to its
incorrect training, and learning fails.
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3 MODULES FOR REASONING OVER TEXT

Modules are designed to perform basic independent reasoning tasks and form the basis of the
compositional reasoning that the model is capable of. We identify a set of tasks that need to be
performed to support diverse enough reasoning capabilities over text, numbers, and dates, and define
modules accordingly. Since the module parameters will be learned jointly with the rest of the model,
we would like the modules to maintain uncertainties about their decisions and propagate them through
the decision making layers via end-to-end differentiability. One of the main contributions of our work
is introducing differentiable modules that perform reasoning over text and symbols in a probabilistic
manner. Table 1 gives an overview of representative modules and §3.2 describes them in detail.

Module In Out Task

find Q P For question spans in the input, find similar spans in the passage
filter Q, P P Based on the question, select a subset of spans from the input
relocate Q, P P Find the argument asked for in the question for input paragraph spans
find-num P N }

Find the number(s) / date(s) associated to the input paragraph spans
find-date P D
count P C Count the number of input passage spans
compare-num-lt P, P P Output the span associated with the smaller number.
time-diff P, P TD Difference between the dates associated with the paragraph spans
find-max-num P P Select the span that is associated with the largest number
span P S Identify a contiguous span from the attended tokens

Table 1: Description of the modules we define and their expected behaviour. All inputs and outputs
are represented as distributions over tokens, numbers, and dates as described in §3.1.

3.1 DATA TYPES

The modules operate over the following data types. Each data type represents its underlying value as
a normalized distribution over the relevant support.

• Question (Q) and Paragraph (P) attentions: soft subsets of relevant tokens in the text.
• Number (N) and Date (D): soft subset of unique numbers and dates from the passage. 1

• Count Number (C): count value as a distribution over the supported count values (0− 9).
• Time Delta (TD): a value amongst all possible unique differences between dates in the

paragraph. In this work, we consider differences in terms of years.
• Span (S): span-type answers as two probability values (start/end) for each paragraph token.

3.2 NEURAL MODULES FOR QUESTION ANSWERING

The question and paragraph contextualized embeddings (Q and P) are available as global variables
to all modules in the program. The question attention computed by the decoder during the timestep
the module was produced is also available to the module as a side argument, as described in §2.1.

find(Q)→ P This module is used to ground attended question tokens to similar tokens in the
paragraph (e.g., “field goal” in Figure 1). We use a question-to-paragraph attention matrix A ∈ Rn×m

whose i-th row is the distribution of similarity over the paragraph tokens for the i-th question token.
The output is an expected paragraph attention; a weighted-sum of the rows of A, weighed by the
input question attention, P =

∑
iQi ·Ai: ∈ Rm. A is computed by normalizing (using softmax)

the rows of a question-to-paragraph similarity matrix S ∈ Rn×m. Here Sij is the similarity between
the contextual embeddings of the i-th question token and the j-th paragraph token computed as,
Sij = wf

T [Qi: ;Pj: ;Qi: ◦Pj:], where wf ∈ R3d is a learnable parameter vector of this module, [; ]
denotes the concatenation operation, and ◦ is elementwise multiplication.

filter(Q, P) → P This module masks the input paragraph attention conditioned on the
question, selecting a subset of the attended paragraph (e.g., selecting fields goals “in the second

1We extract numbers and dates as a pre-processing step explained in the Appendix (§A.3)
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quarter” in Fig. 1). We compute a locally-normalized paragraph-token mask M ∈ Rm where Mj

is the masking score for the j-th paragraph token computed as Mj = σ(wfilter
T [q ;Pj: ;q ◦Pj:]).

Here q =
∑

iQi ·Qi: ∈ Rd, is a weighted sum of question-token embeddings, wfilter
T ∈ R3d is a

learnable parameter vector, and σ is the sigmoid non-linearity function. The output is a normalized
masked input paragraph attention, Pfiltered = normalize(M ◦ P ).

relocate(Q, P)→ P This module re-attends to the paragraph based on the question and is
used to find the arguments for paragraph spans (e.g., shifting the attention from “field goals” to “who
kicked” them). We first compute a paragraph-to-paragraph attention matrix R ∈ Rm×m based on
the question, as Rij = wrelocate

T [(q + Pi:) ;Pj: ; (q + Pi:) ◦Pj:], where q =
∑

iQi ·Qi: ∈ Rd,
and wrelocate ∈ R3d is a learnable parameter vector. Each row of R is also normalized using the
softmax operation. The output attention is a weighted sum of the rows R weighted by the input
paragraph attention, Prelocated =

∑
i Pi ·Ri:

find-num(P)→ N This module finds a number distribution associated with the input paragraph
attention. We use a paragraph token-to-number-token attention map Anum ∈ Rm×Ntokens whose i-th
row is probability distribution over number-containing tokens for the i-th paragraph token. We first
compute a token-to-number similarity matrix Snum ∈ Rm×Ntokens as, Snum

i,j = PT
i:WnumPnj :,

where nj is the index of the j-th number token and Wnum ∈ Rd×d is a learnable parame-
ter. Anum

i: = softmax(Snum
i:). We compute an expected distribution over the number tokens

T =
∑

i Pi · Anum
i: and aggregate the probabilities for number-tokens with the same value to

compute the output distribution N . For example, if the values of the number-tokens are [2, 2, 3, 4]
and T = [0.1, 0.4, 0.3, 0.2], the output will be a distribution over {2, 3, 4} with N = [0.5, 0.3, 0.2].

find-date(P)→ D follows the same process as above to compute a distribution over dates for
the input paragraph attention. The corresponding learnable parameter matrix is Wdate ∈ Rd×d.

count(P) → C This module is used to count the number of attended paragraph spans. The
idea is to learn a module that detects contiguous spans of attention values and counts each as one.
For example, if an attention vector is [0, 0, 0.3, 0.3, 0, 0.4], the count module should produce an
output of 2. The module first scales the attention using the values [1, 2, 5, 10] to convert it into
a matrix Pscaled ∈ Rm×4. A bidirectional-GRU then represents each token attention as a hidden
vector ht. A single-layer feed-forward network maps this representation to a soft 0/1 score to
indicate the presence of a span surrounding it. These scores are summed to compute a count value,
cv =

∑
σ (FF (countGRU(Pscaled))) ∈ R. We hypothesize that the output count value is normally

distributed with cv as mean, and a constant variance v = 0.5, and compute a categorical distribution
over the supported count values, as p(c) ∝ exp(−(c−cv)

2
/2v2) ∀c ∈ [0, 9]. Pretraining this module

by generating synthetic data of attention and count values helps (see §A.4).

compare-num-lt(P1, P2)→ P This module performs a soft less-than operation between
two passage distributions. For example, to find the city with fewer people, cityA or cityB, the module
would output a linear combination of the two input attentions weighted by which city was associated
with a lower number. This module internally calls the find-nummodule to get a number distribution
for each of the input paragraph attentions, N1 and N2. It then computes two soft boolean values,
p(N1 < N2) and p(N2 < N1), and outputs a weighted sum of the input paragraph attentions. The
boolean values are computed by marginalizing the relevant joint probabilities:

p(N1 < N2) =
∑
i

∑
j

1Ni
1<Nj

2
N i

1N
j
2 p(N2 < N1) =

∑
i

∑
j

1Ni
2<Nj

1
N i

2N
j
1

The final output is, Pout = p(N1 < N2) ∗ P1 + p(N2 < N1) ∗ P2. When the the predicted number
distributions are peaky, p(N1 < N2) or p(N2 < N1) is close to 1, and the output is either P1 or P2.

We similarly include the comparison modules compare-num-gt, compare-date-lt, and
compare-date-gt, defined in an essentially identical manner, but for greater-than and for dates.

time-diff(P1, P2)→ TD The module outputs the difference between the dates associated
with the two paragraph attentions as a distribution over all possible difference values. The module
internally calls the find-date module to get a date distribution for the two paragraph attentions,
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D1 and D2. The probability of the difference being td is computed by marginalizing over the joint
probability for the dates that yield this value, as p(td) =

∑
i,j 1(di−dj=td)D

i
1D

j
2.

find-max-num(P) → P, find-min-num(P) → P Given a passage attention attending to
multiple spans, this module outputs an attention for the span associated with the largest (or smallest)
number. We first compute an expected number token distribution T using find-num, then use this
to compute the expected probability that each number token is the one with the maximum value,
Tmax ∈ RNtokens (explained below). We then re-distribute this distribution back to the original passage
tokens associated with those numbers. The contribution from the i-th paragraph token to the j-th
number token, Tj , was Pi ·Anum

ij . To compute the new attention value for token i, we re-weight this
contribution based on the ratio Tmax

j /Tj and marginalize across the number tokens to get the new token
attention value: P̄i =

∑
j
Tmax
j /Tj · Pi ·Anum

ij .

Computing Tmax: Consider a distribution over numbers N , sorted in an increasing order. Say we
sample a set S (size n) of numbers from this distribution. The probability that Nj is the largest
number in this set is p(x ≤ Nj)

n − p(x ≤ Nj−1)n i.e. all numbers in S are less than or equal to Nj ,
and at least one number is Nj . By picking the set size n = 3 as a hyperparameter, we can analytically
(and differentiably) convert the expected distribution over number tokens, T , into a distribution over
the maximum value Tmax.

span(P) → S This module is used to convert a paragraph attention into a contiguous answer
span and only appears as the outermost module in a program. The module outputs two probability
distributions, Ps and Pe ∈ Rm, denoting the probability of a token being the start and end of a span,
respectively. This module is implemented similar to the count module (see §A.5).

4 AUXILIARY SUPERVISION

As mentioned in §2.2, jointly learning the parameters of the parser and the modules using only end-
task QA supervision is extremely challenging. To overcome issues in learning, (a) we introduce an
unsupervised auxiliary loss to provide an inductive bias to the execution of find-num, find-date,
and relocate modules (§4.1); and (b) provide heuristically-obtained supervision for question
program and intermediate module output (§4.2) for a subset of questions (5–10%).

4.1 UNSUPERVISED AUXILIARY LOSS FOR IE

The find-num, find-date, and relocate modules perform information extraction by finding
relevant arguments for entities and events mentioned in the context. In our initial experiments we
found that these modules would often spuriously predict a high attention score for output tokens that
appear far away from their corresponding inputs. We introduce an auxiliary objective to induce the
idea that the arguments of a mention should appear near it. For any token, the objective increases the
sum of the attention probabilities for output tokens that appear within a window W = 10, letting the
model distribute the mass within that window however it likes. The objective for the find-num is

Hn
loss = −

m∑
i=1

log
(Ntokens∑

j=0

1nj∈[i±W ]A
num

ij

)
We compute a similar loss for the date-attention map Adate (Hd

loss) and the relocate-map R (H r
loss).

The final auxiliary loss is Hloss = Hn
loss +Hd

loss +H r
loss.

4.2 QUESTION PARSE AND INTERMEDIATE MODULE OUTPUT SUPERVISION

Question Parse Supervision. Learning to parse questions in a noisy feedback environment is very
challenging. For example, even though the questions in CLEVR are programmatically generated,
Hu et al. (2017) needed to pre-train their parser using external supervision for all questions. For
DROP, we have no such external supervision. In order to bootstrap the parser, we analyze some
questions manually and come up with a few heuristic patterns to get program and corresponding
question attention supervision (for modules that require it) for a subset of the training data (10%
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of the questions; see §A.6). For example, for program find-num(find-max-num(find())),
we provide supervision for question tokens to attend to when predicting the find module.

Intermediate Module Output Supervision. Consider the question, “how many yards was the
shortest goal?”. The model only gets feedback for how long the shortest goal is, but not for other
goals. Such feedback biases the model in predicting incorrect values for intermediate modules (only
the shortest goal instead of all in find-num) which in turn hurts model generalization.

We provide heuristically-obtained noisy supervision for the output of the find-num and
find-date modules for a subset of the questions (5%) for which we also provide question program
supervision. For questions like “how many yards was the longest/shortest touchdown?”, we identify
all instances of the token “touchdown” in the paragraph and assume the closest number to it should be
an output of the find-num module. We supervise this as a multi-hot vector N∗ and use an auxiliary
loss, similar to question-attention loss, against the output distribution N of find-num. We follow
the same procedure for a few other question types involving dates and numbers; see §A.7 for details.

5 EXPERIMENTS

5.1 DATASET

We perform experiments on a portion of the recently released DROP dataset (Dua et al., 2019), which
to the best of our knowledge is the only dataset that requires the kind of compositional and symbolic
reasoning that our model aims to solve. Our model possesses diverse but limited reasoning capability;
hence, we try to automatically extract questions in the scope of our model based on their first n-gram.
These n-grams were selected by performing manual analysis on a small set of questions. The dataset
we construct contains 20, 000 questions for training/validation, and 1800 questions for testing (25%
of DROP). Since the DROP test set is hidden, this test set is extracted from the validation data.
Though this is a subset of the full DROP dataset it is still a significantly-sized dataset that allows
drawing meaningful conclusions. We make our subset and splits available publicly with the code.

Based on the manual analysis we classify these questions into different categories, which are:
Date-Compare e.g. What happened last, commission being granted to Robert or death of his cousin?
Date-Difference e.g. How many years after his attempted assassination was James II coronated?
Number-Compare e.g. Were there more of cultivators or main agricultural labourers in Sweden?
Extract-Number e.g. How many yards was Kasay’s shortest field goal during the second half?
Count e.g. How many touchdowns did the Vikings score in the first half?
Extract-Argument e.g. Who threw the longest touchdown pass in the first quarter?

Auxiliary Supervision Out of the 20, 000 training questions, we provide question program su-
pervision for 10% (2000), and intermediate module output supervision for 5% (1000) of training
questions. We use curriculum learning (Bengio et al., 2009) where the model is trained only on
heuristically-supervised non-count questions for the first 5 epochs.

5.2 RESULTS

We compare to publicly available best performing models: NAQANet (Dua et al., 2019),
NABERT+ (Kinley & Lin, 2019), TAG-NABERT+ (Avia Efrat & Shoham, 2019), and MTMSN (Hu
et al., 2019), all trained on the same data as our model. We implement our model using Al-
lenNLP (Gardner et al., 2018). 2

The hyperparameters used for our model are described in the appendix. All results are reported as an
average of 4 model runs.

Overall. Table 2a compares our model’s performance to state-of-the-art models on our full test set.
Our model achieves an F1 score of 73.1 (w/ GRU) and significantly outperforms NAQANet (62.1
F1). Using BERT representations, our model’s performance increases to 77.4 F1 and outperforms
SoTA models that use BERT representations, such as MTMSN (76.5 F1). This shows the efficacy of
our proposed model in understanding complex compositional questions and performing multi-step

2Our code is available at https://github.com/nitishgupta/nmn-drop
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Model F1 EM

NAQANET 62.1 57.9
TAG-NABERT+ 74.2 70.6
NABERT+ 75.4 72.0
MTMSN 76.5 73.1
OUR MODEL (W/ GRU) 73.1 69.6
OUR MODEL (W/ BERT) 77.4 74.0

(a) Performance on DROP (pruned)

Question Type MTMSN Our Model
(w/ BERT)

DATE-COMPARE (18.6%) 85.2 82.6
DATE-DIFFERENCE (17.9%) 72.5 75.4
NUMBER-COMPARE (19.3%) 85.1 92.7
EXTRACT-NUMBER (13.5%) 80.7 86.1
COUNT (17.6%) 61.6 55.7
EXTRACT-ARGUMENT (12.8%) 66.6 69.7

(b) Performance by Question Type (F1)

Table 2: Performance of different models on the dataset and across different question types.

reasoning over natural language text. Additionally, this shows that structured models still benefit
when used over representations from large pretrained-LMs, such as BERT.

Performance by Question Type. Table 2b shows the performance for different question types as
identified by our heuristic labeling. Our model outperforms MTMSN on majority of question types
but struggles with counting questions; it outperforms MTMSN on only some of the runs. Even after
pre-training the count module using synthetic data, training it is particularly unstable. We believe this
is because feedback from count questions is weak, i.e., the model only gets feedback about the count
value and not what the underlying set is; and because it was challenging to define a categorical count
distribution given a passage attention distribution— finding a better way to parameterize this function
is an interesting problem for future work.

Effect of Additional Supervision. Figure 2a shows that the unsupervised auxiliary objective signif-
icantly improves model performance (from 57.3 to 73.1 F1). The model using BERT diverges while
training without the auxiliary objective. Additionally, the intermediate module output supervision has
slight positive effect on the model performance.

Effect of Training Data Size. Figure 2b shows that our model significantly outperforms MTMSN
when training using less data, especially using 10-25% of the available supervision. This shows that
by explicitly modeling compositionality, our model is able to use additional auxiliary supervision
effectively and achieves improved model generalization.

Incorrect Program Predictions. Mistakes by our model can be classified into two types; incorrect
program prediction and incorrect execution. Here we show few mistakes of the first type that highlight
the need to parse the question in a context conditional manner:

1. How many touchdown passes did Tom Brady throw in the season? - count(find) is incorrect
since the correct answer requires a simple lookup from the paragraph.

2. Which happened last, failed assassination attempt on Lenin, or the Red Terror? -
date-compare-gt(find, find)) is incorrect since the correct answer requires natural
language inference about the order of events and not symbolic comparison between dates.

3. Who caught the most touchdown passes? - relocate(find-max-num(find))). Such
questions, that require nested counting, are out of scope of our defined modules because the model
would first need to to count the passes caught by each player.

6 RELATED WORK

Semantic parsing techniques have been used for a long time for compositional question understanding.
Approaches have used labeled logical-forms (Zelle & Mooney, 1996; Zettlemoyer & Collins, 2005),
or weak QA supervision (Clarke et al., 2010; Berant et al., 2013; Reddy et al., 2014) to learn parsers
to answer questions against structured knowledge bases. These have also been extended for QA
using symbolic reasoning against semi-structured tables (Pasupat & Liang, 2015; Krishnamurthy
et al., 2017; Neelakantan et al., 2016). Recently, BERT-based models for DROP have been been
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Supervision Type w/ BERT w/ GRU
Hloss MOD-SUP

3 3 77.4 73.1
3 76.3 71.8

3 –* 57.3

(a) Effect of Auxiliary Supervision: The aux-
iliary loss contributes significantly to the perfor-
mance, whereas module output supervision has
little effect. *Training diverges without Hloss for
the BERT-based model.

(b) Performance with less training data: Our model
performs significantly better than the baseline with less
training data, showing the efficacy of explicitly modeling
compositionality.

Figure 2: Effect of auxiliary losses and the size of training data on model performance.

proposed (Hu et al., 2019; Andor et al., 2019; Kinley & Lin, 2019), but all these models essentially
perform a multiclass classification over pre-defined programs. Our model on the other hand provides
an interpretable, compositional parse of the question and exposes its intermediate reasoning steps.

For combining learned execution modules with semantic parsing, many variations to NMNs have
been proposed; NMN (Andreas et al., 2016) use a PCFG parser to parse the question and only learn
module parameters. N2NMNs (Hu et al., 2017) simultaneously learn to parse and execute but require
pre-training the parser. Gupta & Lewis (2018) propose a NMN model for QA against knowledge
graphs and learn execution for semantic operators from QA supervision alone. Recent works (Gupta
& Lewis, 2018; Mao et al., 2019) also use domain-knowledge to alleviate issues in learning by using
curriculum learning to train the executor first on simple questions for which parsing is not an issue.
All these approaches perform reasoning on synthetic domains, while our model is applied to natural
language. Concurrently, Jiang & Bansal (2019) apply NMN to HotpotQA (Yang et al., 2018) but
their model comprises of only 3 modules and is not capable of performing symbolic reasoning.

7 FUTURE DIRECTIONS

We try a trivial extension to our model by adding a module that allows for addition & subtraction
between two paragraph numbers. The resulting model achieves a score of 65.4 F1 on the complete
validation data of DROP, as compared to MTMSN that achieves 72.8 F1.

Manual analysis of predictions reveals that a significant majority of mistakes are due to insufficient
reasoning capability in our model and would require designing additional modules. For example,
questions such as (a) How many languages each had less than 115, 000 speakers in the population?
and Which racial groups are smaller than 2%? would require pruning passage spans based on the
numerical comparison mentioned in the question; (b) Which quarterback threw the most touchdown
passes? and In which quarter did the teams both score the same number of points? would require
designing modules that considers some key-value representation of the paragraph; (c) How many
points did the packers fall behind during the game? would require IE for implicit argument (points
scored by the other team). It is not always clear how to design interpretable modules for certain
operations; for example, for the last two cases above.

It is worth emphasizing here what happens when we try to train our model on these questions for
which our modules can’t express the correct reasoning. The modules in the predicted program get
updated to try to perform the reasoning anyway, which harms their ability to execute their intended
operations (cf. §2.2). This is why we focus on only a subset of the data when training our model.

In part due to this training problem, some other mistakes of our model relative to MTMSN on the full
dataset are due to incorrect execution of the intermediate modules. For example, incorrect grounding
by the find module, or incorrect argument extraction by the find-num module. For mistakes such
as these, our NMN based approach allows for identifying the cause of mistakes and supervising
these modules using additional auxiliary supervision that is not possible in black-box models. This
additionally opens up avenues for transfer learning where modules can be independently trained

9



Published as a conference paper at ICLR 2020

using indirect or distant supervision from different tasks. Direct transfer of reasoning capability in
black-box models is not so straight-forward.

To solve both of these classes of errors, one could use black-box models, which gain performance
on some questions at the expense of limited interpretability. It is not trivial to combine the two
approaches, however. Allowing black-box operations inside of a neural module network significantly
harms the interpretability—e.g., an operation that directly answers a question after an encoder,
mimicking BERT-QA-style models, encourages the encoder to perform complex reasoning in a
non-interpretable way. This also harms the ability of the model to use the interpretable modules even
when they would be sufficient to answer the question. Additionally, due to our lack of supervised
programs, training the network to use the interpretable modules instead of a black-box shortcut
module is challenging, further compounding the issue. Combining these black-box operations with
the interpretable modules that we have presented is an interesting and important challenge for future
work.

8 CONCLUSION

We show how to use neural module networks to answer compositional questions requiring symbolic
reasoning against natural language text. We define probabilistic modules that propagate uncertainty
about symbolic reasoning operations in a way that is end-to-end differentiable. Additionally, we show
that injecting inductive bias using unsupervised auxiliary losses significantly helps learning.

While we have demonstrated marked success in broadening the scope of neural modules and applying
them to open-domain text, it remains a significant challenge to extend these models to the full range of
reasoning required even just for the DROP dataset. NMNs provide interpretability, compositionality,
and improved generalizability, but at the cost of restricted expressivity as compared to more black
box models. Future research is necessary to continue bridging these reasoning gaps.

ACKNOWLEDGMENTS

We would like to thank Daniel Deutsch and the anonymous reviewers for their helpful comments.
This material is based upon work sponsored in part by the DARPA MCS program under Contract
No. N660011924033 with the United States Office Of Naval Research, an ONR award, the LwLL
DARPA program, and a grant from AI2.

REFERENCES

Daniel Andor, Luheng He, Kenton Lee, and Emily Pitler. Giving BERT a Calculator: Finding
Operations and Arguments with Reading Comprehension. ArXiv, abs/1909.00109, 2019.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In CVPR,
2016.

Elad Segal Avia Efrat and Mor Shoham. Tag-based multi-span extraction in reading comprehension.
2019. URL https://github.com/eladsegal/project-NLP-AML.
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A APPENDIX

A.1 QUESTION AND PARAGRAPH ENCODER

Our model represents the question q as Q ∈ Rn×d and paragraph p as P ∈ Rm×d using contextual-
ized token embeddings. These embeddings are either produced using a multi-layer GRU network that
is trained from scratch, or a pr-trained BERT model that is fine-tuned during training.

GRU: We use a 2-layer, 64-dimensional (d = 128, effectively), bi-directional GRU. The same GRU is
used for both, the question and the paragraph. The token embeddings input to the contextual encoder
are a concatenation of 100-d pre-trained GloVe embeddings, and 200-d embeddings output from a
CNN over the token’s characters. The CNN uses filters of size=5 and character embeddings of 64-d.
The pre-trained glove embeddings are fixed, but the character embeddings and the parameters for the
CNN are jointly learned with the rest of the model.

BERT: The input to the BERT model is the concatenation of the question and paragraph in the
following format: [CLS] Question [SEP] Context [SEP]. The question and context to-
kens input to the BERT model are sub-words extracted by using BERT’s tokenizer. We separate
the question and context representation from the output of BERT as Q and P, respectively. We use
‘bert-base-uncased‘ model for all out experiments.

A.2 QUESTION PARSER DECODER

The decoder for question parsing is a single-layer, 100-dimensional, LSTM. For each module, we use
a 100-dimensional embedding to present it as an action in the decoder’s input/output vocabulary. The
attention is computed as a dot-product between the decoder hidden-state and the encoders hidden
states which is normalized using the softmax operation.

As the memory-state for the zero-eth time-step in the decoder, we use the last hidden-state of the
question encoder GRU, or the [CLS] embedding for the BERT-based model.

We use a beam-size of 4 for the approximate maximum marginal likelihood objective. Optmization is
performed using the Adam algorithm with a learning rate of 0.001 or using BERT’s optimizer with a
learning rate of 1e− 5.

A.3 NUMBER AND DATE PARSING

We pre-process the paragraphs to extract the numbers and dates in them. For numbers, we use a
simple strategy where all tokens in the paragraph that can be parsed as a number are extracted. For
example, 200 in “200 women”. The total number of number-tokens in the paragraph is denoted by
Ntokens. We do not normalize numbers based on their units and leave it for future work.

To extract dates from the paragraph, we run the spaCy-NER3 and collect all “DATE” mentions. To
normalize the date mentions we use an off-the-shelf date-parser4. For example, a date mention “19th
November, 1961” would be normalized to (19, 11, 1961) (day, month, year). The total number of
date-tokens is denoted by Dtokens

A.4 PRE-TRAINING COUNT MODULE

As mentioned in the paper, training the count module is challenging and found that pre-training the
parameters of the count module helps.

To re-iterate, the module gets as input a paragraph attention P ∈ Rm. The module first scales the
attention using the values [1, 2, 5, 10] to convert it into a matrix Pscaled ∈ Rm×4. A bidirectional-GRU
then represents each token attention as a hidden vector ht. A single-layer feed-forward network maps
this representation to a soft 0/1 score to indicate the presence of a span surrounding it. These scores

3https://spacy.io/
4https://github.com/scrapinghub/dateparser
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are summed to compute a count value, cv .

countscores = σ
(
FF (countGRU(Pscaled))

)
∈ Rm

cv =
∑

countscores ∈ R

We generate synthetic data to pre-train this module; each instance is a normalized-attention vector
x = Rm and a count value y ∈ [0, 9]. This is generated by sampling m uniformly between 200−600,
then sampling a count value y uniformly in [0, 9]. We then sample y span-lengths between 5− 15
and also sample y non-overlapping span-positions in the attention vector x. For all these y spans in x,
we put a value of 1.0 and zeros everywhere else. We then add 0-mean, 0.01-variance gaussian noise
to all elements in x and normalize to make the normalized attention vector that can be input to the
count module.

We train the parameters of the count module using these generated instances using L2-loss between
the true count value and the predicted cv .

The countGRU in the count module (spanGRU – span module) is a 2-layer, bi-directional GRU
with input-dim = 4 and output-dim = 20. The final feed-forward comprises of a single-layer to map
the output of the countGRU into a scalar score.

A.5 SPAN MODULE

The span module is implemented similar to the count module. The input paragraph attention is
first scaled using [1, 2, 5, 10], then a bidirectional-GRU represents each attention as a hidden vector,
and a single-layer feed-forward network maps this to 2 scores, for span start and end. A softmax
operation on these scores gives the output probabilities.

A.6 AUXILIARY QUESTION PARSE SUPERVISION

For questions with parse supervision z∗, we decouple the marginal likelihood into two maximum
likelihood objectives, p(z∗|q) and p(y∗|z∗). We also add a loss for the decoder to attend to the tokens
in the question attention supervision when predicting the relevant modules. The question attention
supervision is provided as a mutli-hot vector α∗ ∈ {0, 1}n. The loss against the predicted attention
vector α is, Qloss = −

∑n
i=1 α

∗
i logαi. Since the predicted attention is a normalized distribution, the

objective increases the sum of log-probabilities of the tokens in the supervision.

The following patterns are used to extract the question parse supervision for the training data:

1. what happened first SPAN1 or SPAN2?
span(compare-date-lt(find(), find())): with find attentions on SPAN1 and SPAN2,
respectively. Use compare-date-gt, if second instead of first.

2. were there fewer SPAN1 or SPAN2?
span(compare-num-lt(find(), find())): with find attentions on SPAN1 and SPAN2,
respectively. Use compare-num-gt, if more instead of fewer.

3. how many yards was the longest {touchdown / field goal}?
find-num(find-max-num(find())): with find attention on touchdown / field goal. For
shortest, the find-min-num module is used.

4. how many yards was the longest {touchdown / field goal} SPAN ?
find-num(find-max-num(filter(find()))): with find attention on touchdown / field
goal and filter attention on all SPAN tokens.

5. how many {field goals, touchdowns, passes} were scored SPAN?
count(filter(find())): with find attention on {field goals, touchdowns, passes} and
filter attention on SPAN.

6. who {kicked, caught, threw, scored} SPAN?
span(relocate(filter(find()))): with relocate attention on {kicked, caught, threw,
scored}, find attention on {touchdown / field goal}, and filter attention on all other tokens
in the SPAN.

13



Published as a conference paper at ICLR 2020

Figure 3: Example usage of num-compare-lt: Our model predicts the program
span(compare-num-lt(find, find)) for the given question. We show the question atten-
tions and the predicted passage attentions of the two find operations using color-coded highlights
on the same question and paragraph (to save space) at the bottom. The number grounding for the two
paragraph attentions predicted in the compare-num-lt module are shown using the same colors
in number-distribution. Since the number associated to the passage span “45 to 64” is lower (10.3 vs.
15.3), the output of the compare-num-lt module is “45 to 64” as shown in the passage above.

A.7 HEURISTIC INTERMEDIATE MODULE OUTPUT SUPERVISION

As mentioned in Section 4.3, we heuristically find supervision for the output of the find-num and
find-date module for a subset of questions that already contain question program supervision.
These are as follows:

1. how many yards was the longest/shortest {touchdown, field goal}?
We find all instances of touchdown/field goal in the passage and assume that the number appearing
closest should be an output of the find-num module.

2. what happened first EVENT1 or EVENT2?
Similar to above, we perform fuzzy matching to find the instance of EVENT1 and EVENT2 in the
paragraph and assume that the closest dates should be the output of the two find-date module
calls made by the compare-date-lt module in the gold program.

3. were there fewer SPAN1 or SPAN2?
This is exactly the same as previous for find-num module calls by compare-num-lt.

A.8 EXAMPLE PREDICTIONS

In Figures 3, 4, 5, 6, 7 we show predictions by our model that shows the learned execution of various
modules defined in the paper.
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Figure 4: Example usage of date-compare-lt: Similar to Fig. 3, we show the question atten-
tions, the output passage attentions of the find module, and the date grounding predicted in the
compare-date-lt module in color-coded highlights. The passage span predicted as the answer
is the one associated to a lower-valued date.

Figure 5: Example usage of count: For the predicted program count(find), the find module
predicts all “rushing touchdown” spans from the passage and the count module counts their number
and represents its output as a distribution over possible count values. In this example, the predicted
distribution as a mode of “5”.
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Figure 6: Example usage of find-max-num: For the predicted program, the model first grounds
the question span “field goal” to all field goals in the passage, shown as attention in the bottom
half. The find-max-num first finds the number associated with the input passage spans (shown as
input-num-distribution), then finds the distribution over max value (shown as max-num-distribution),
and finally outputs the passage span associated with this max value (shown in the passage attention
on top). The find-num module finally extracts the number associated with this passage attention as
the answer.
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Figure 7: Example usage of relocate: Similar to the sub-program find-max-num(find) in
Fig. 6, the find module finds all mentions of “rushing TD” in the passage and find-max-num
selects the one associated to the largest number. This is the span “getting a 32-yard TD run” in the
passage above. The question attention predicted for the relocate module and its output passage
attention is also shown in the passage above.
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