Parallel Large Scale Feature Selection for Logistic Regression

Sameer Singh¹ Jeremy Kubica² Scott Larsen²
Daria Sorokina³

¹Department of Computer Science University of Massachusetts, Amherst

²Google Inc, Pittsburgh

³Department of Computer Science Carnegie Mellon University

SIAM Data Mining, 2009

Outline

- Motivation
 - Logistic Regression
 - Feature Selection
- Single Feature Optimization
 - Method
 - Histogram Approximation
 - Parallelization
- 3 Experiments
 - UCI Datasets
 - RCV1
 - Parallelization

Outline

- Motivation
 - Logistic Regression
 - Feature Selection
- Single Feature Optimization
 - Method
 - Histogram Approximation
 - Parallelization
- 3 Experiments
 - UCI Datasets
 - RCV1
 - Parallelization

Logistic Regression

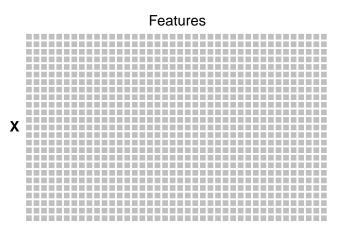
$$P(y=1\mid \vec{x}_i, \vec{\beta}) = \frac{e^{\vec{\beta}\cdot\vec{x}}}{1+e^{\vec{\beta}\cdot\vec{x}}}$$

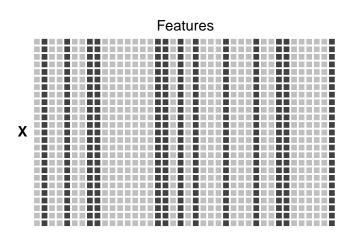
$$\vec{\beta} = \underset{\vec{\beta}}{\operatorname{argmax}} \sum_{i=1}^{N} \left(y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \right)$$

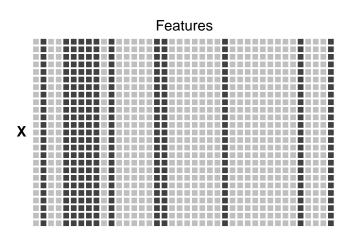
Logistic Regression

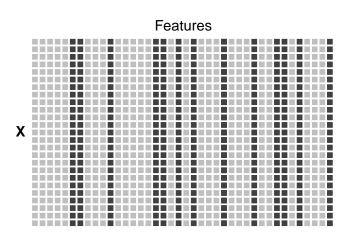
$$P(y = 1 \mid \vec{x}_i, \vec{\beta}) = \frac{e^{\vec{\beta} \cdot \vec{x}}}{1 + e^{\vec{\beta} \cdot \vec{x}}}$$

$$\vec{\beta} = \underset{\vec{\beta}}{\operatorname{argmax}} \sum_{i=1}^{N} \left(y_i \ln p_i + (1 - y_i) \ln(1 - p_i) \right)$$

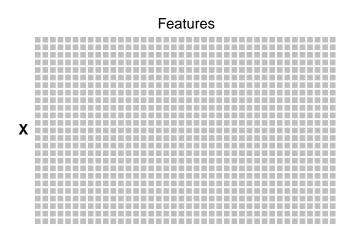


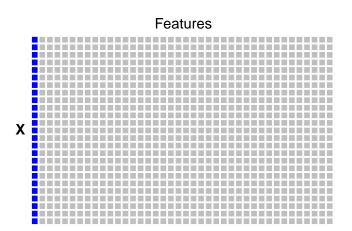


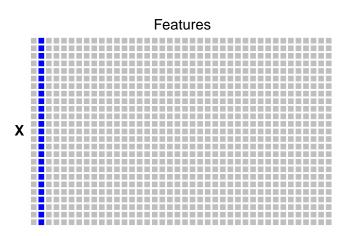


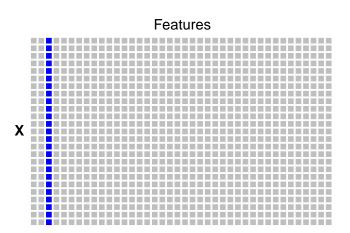


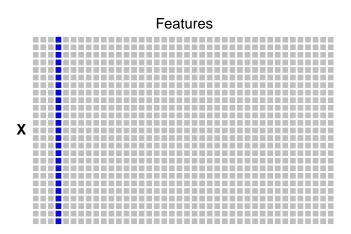
For D features, train the model $O(2^D)$ times

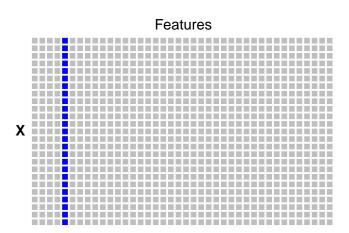


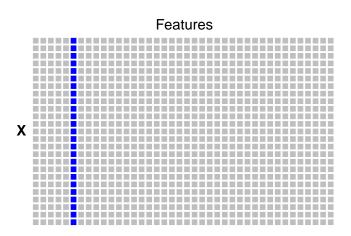


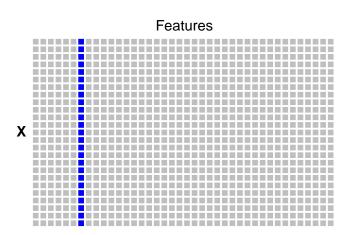


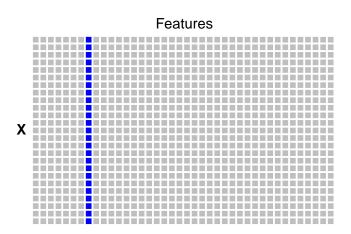


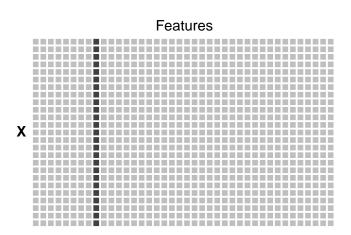


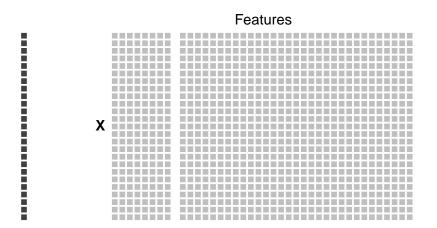


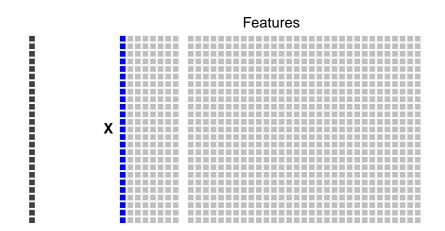


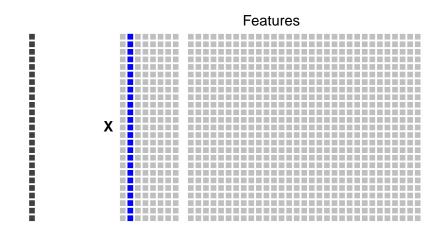


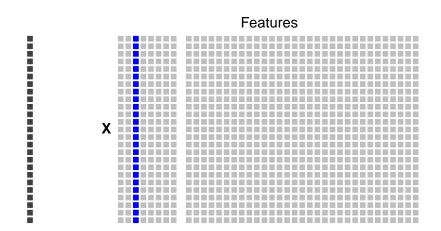


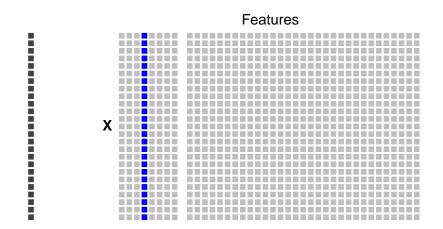


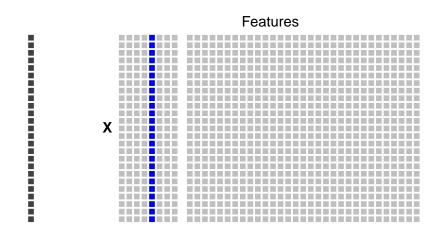


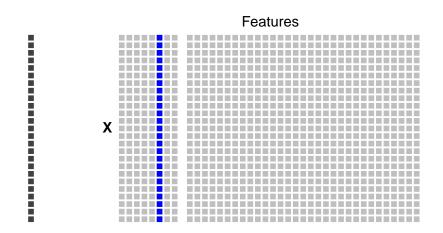


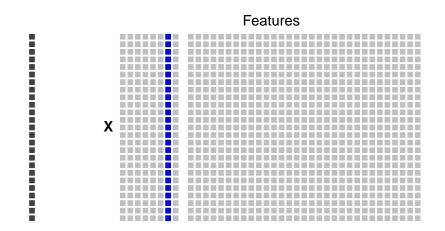


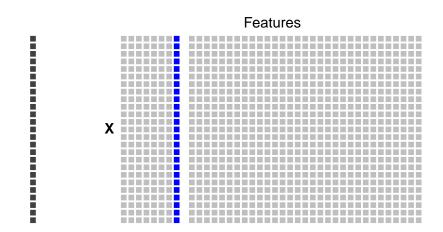


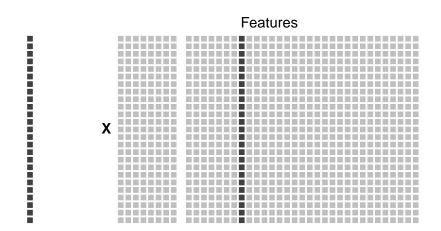


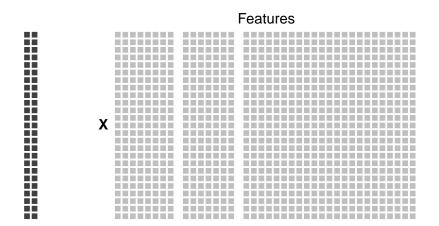


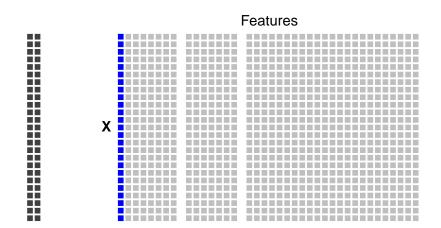


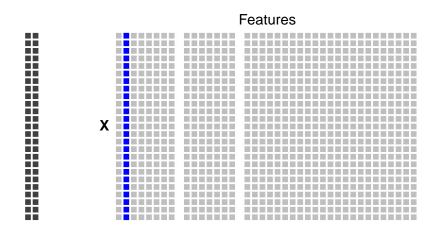


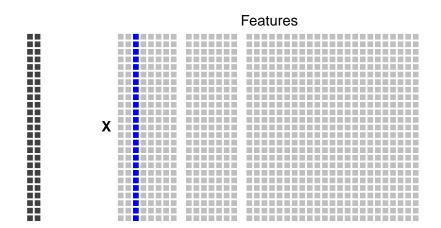


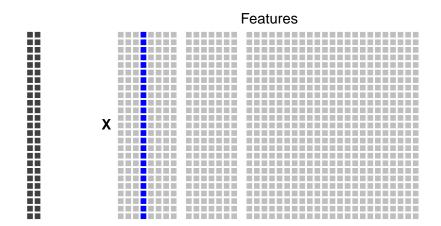


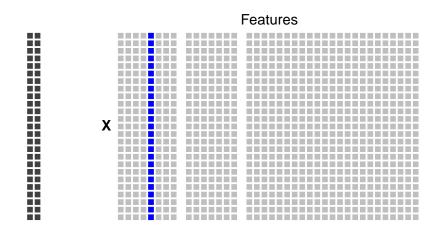


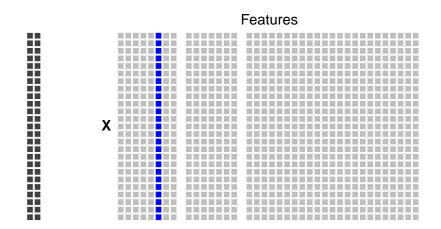


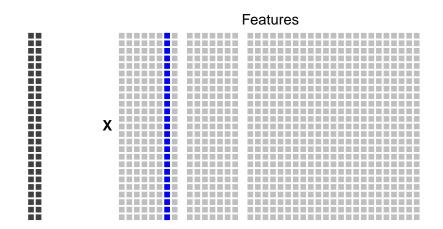


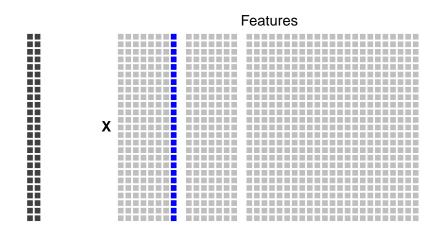


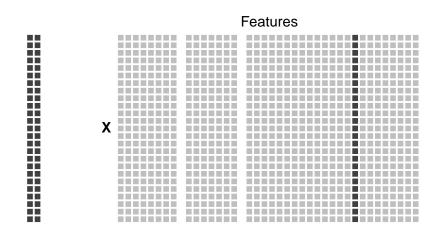


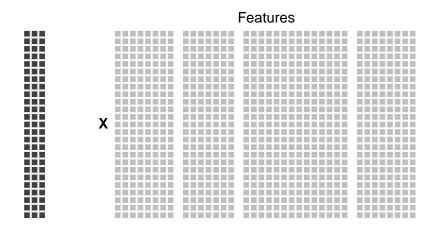


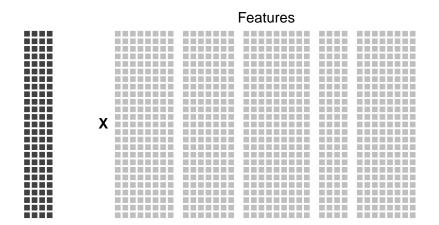


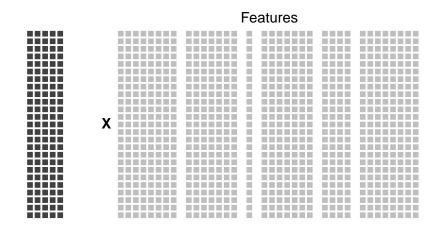


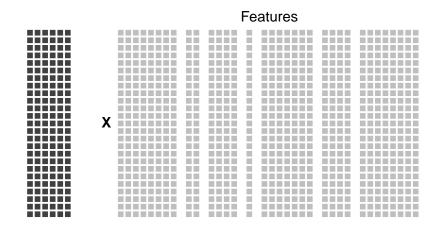


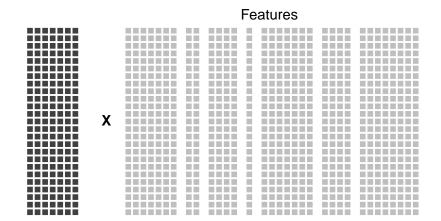










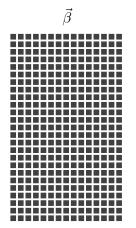


For D features, train the model $O(D^2)$ times

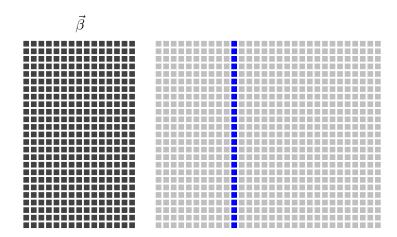
Outline

- 1 Motivation
 - Logistic Regression
 - Feature Selection
- Single Feature Optimization
 - Method
 - Histogram Approximation
 - Parallelization
- 3 Experiments
 - UCI Datasets
 - RCV1
 - Parallelization

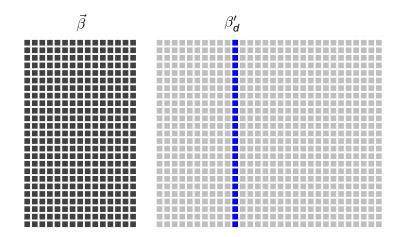
Single Feature Optimization



Single Feature Optimization



Single Feature Optimization



Newton's Method

$$p_{id} = \frac{\mathbf{e}^{\vec{\beta} \cdot \vec{\mathbf{x}}_i + \mathbf{x}'_{id}\beta'_d}}{1 + \mathbf{e}^{\vec{\beta} \cdot \vec{\mathbf{x}}_i + \mathbf{x}'_{id}\beta'_d}}$$

$$\beta'_d = \underset{\beta'_d}{\operatorname{argmax}} \sum_{i=1}^{N} \left(y_i \ln p_{id} + (1 - y_i) \ln(1 - p_{id}) \right)$$

Newton's Method

$$\rho_{id} = \frac{e^{\vec{\beta} \cdot \vec{x}_i + x'_{id}\beta'_d}}{1 + e^{\vec{\beta} \cdot \vec{x}_i + x'_{id}\beta'_d}}$$

$$\beta'_d = \underset{\beta'_d}{\operatorname{argmax}} \sum_{i=1}^{N} \left(y_i \ln p_{id} + (1 - y_i) \ln(1 - p_{id}) \right)$$

Newton's Method

$$p_{id} = \frac{e^{\vec{\beta} \cdot \vec{x}_i + x'_{id}\beta'_d}}{1 + e^{\vec{\beta} \cdot \vec{x}_i + x'_{id}\beta'_d}}$$

$$\frac{\partial L}{\partial \beta'_d} = \sum_{i=1}^N x'_{id}(y_i - p_{id})$$

$$\frac{\partial^2 L}{\partial \beta'^2_d} = -\sum_{i=1}^N p_{id}(1 - p_{id})x'^2_{id}$$

Histogram Approximation

- As N grows, Newton's method slows down considerably
- B bins, based on predicted probability of base model
 - using only $\vec{\beta}$ and \vec{x}
- Newton's method dependent on B instead of N
 - *N* >> *B*

- Map: Parallel over records
 - Input: Base features $\vec{x_i}$, class y_i , new features $\vec{x'_i}$
 - \blacksquare Predict using the base model p_i
 - **Output:** $(x'_{id}, \langle y_i, p_i \rangle)$ for every feature x'_{id} in \vec{x}'_i
- Reduce: Parallel over features
 - Input: x'_d , $\langle y_i, p_i \rangle^n$
 - Use Newton's method to find β'_d that maximizes scoring measure
 - With or without histogram approximation
 - **Output:** Estimated coefficient β'_d

Evaluate the coefficients on test dataset to evaluate utility

- Map: Parallel over records
 - **Input:** Base features $\vec{x_i}$, class y_i , new features \vec{x}'_i
 - \blacksquare Predict using the base model p_i
 - **Output:** $(x'_{id}, \langle y_i, p_i \rangle)$ for every feature x'_{id} in \vec{x}'_i
- Reduce: Parallel over features
 - Input: x'_d , $\langle y_i, p_i \rangle^n$
 - Use Newton's method to find β'_d that maximizes scoring measure
 - With or without histogram approximation
 - **Output:** Estimated coefficient β'_d

Evaluate the coefficients on test dataset to evaluate utility

- Map: Parallel over records
 - **Input:** Base features $\vec{x_i}$, class y_i , new features \vec{x}'_i
 - \blacksquare Predict using the base model p_i
 - **Output:** $(x'_{id}, \langle y_i, p_i \rangle)$ for every feature x'_{id} in \vec{x}'_i
- Reduce: Parallel over features
 - Input: x'_d , $\langle y_i, p_i \rangle^n$
 - Use Newton's method to find β'_d that maximizes scoring measure
 - With or without histogram approximation
 - Output: Estimated coefficient β'_d

Evaluate the coefficients on test dataset to evaluate utility

Outline

- 1 Motivation
 - Logistic Regression
 - Feature Selection
- Single Feature Optimization
 - Method
 - Histogram Approximation
 - Parallelization
- 3 Experiments
 - UCI Datasets
 - RCV1
 - Parallelization

Methods

- IRLS: Iteratively Re-weighted Least Squares
 - P. Komarek and A. Moore, ICDM 2005¹
 - Fast, efficient single machine implementation of Logistic Regression
 - Retrain classifier for each candidate feature
- SFO: Single Feature Optimization
 - Use IRLS to train the "base" model
- GD: Gradient Method
 - S. Perkins and J. Theiler, ICML 2003
 - Ranks features according to their gradient on training data
 - Parallelize it same way as SFO

¹http://www.autonlab.org/autonweb/10538.html

Mushroom Dataset

Base	Feature	IRLS	SFO		GD
Features	Class	-LL	-LL	Rank	Rank
	odor	0.111	0.076	1	2
bias	spore-print-color	0.558	0.543	2	1
	gill-color	0.623	0.604	3	9
	stalk-surface-above	0.696	0.692	5	3
	ring-type	0.711	0.687	4	8
	spore-print-color	0.074	0.069	1	5
	stalk-surface-above	0.098	0.090	3	3
bias,	population	0.099	0.092	5	6
odor	gill-color	0.099	0.091	4	7
	stalk-color-below	0.100	0.086	2	4

Table: The negative test set log-likelihood for the top features in the Mushroom data set as selected by IRLS, the corresponding SFO scores, and rankings from SFO and the gradient method.

InternetAds Dataset

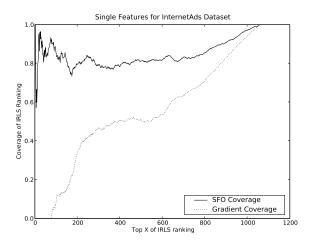


Figure: Coverage of the IRLS ranking by SFO and the Gradient method for the Internet Ads data. The features were ranked by test set log-likelihood.

RCV1

Round 1		Round 2		Round 3		Round 4		Round 5	
				bias	econ	bias	econ	bias	econ
bias		bias econ		muni		muni	defi	muni	defi
								shar	
econ	283.7	muni	204.3	defi	110.2	shar	106.7	infl	79.5
defi	213.7	shar	139.3	shar	106.8	stat	82.1	wag	77.1
infl	190.1	coup	131.3	stat	90.2	wag	79.7	stat	76.5
gdp	182.9	obli	110.3	infl	87.2	profit	79.1	mood	68.6
muni	176.3	prof	106.1	gdp	86.6	infl	74.7	dig	66.0

Table: Top 5 features & estimated improvement on training set loglikelihood.

Timing Results

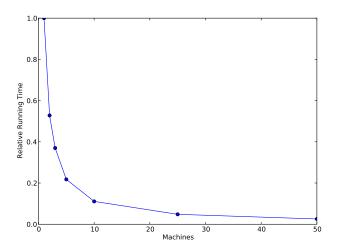


Figure: Timing (10,000,000 records / 100,000 features)

Speedup

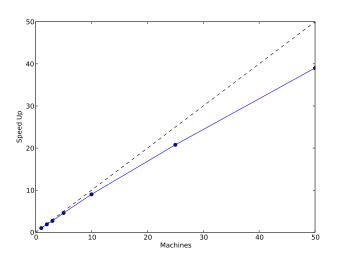


Figure: Speedup (10,000,000 records / 100,000 features)

Summary

- Introduce Single Feature Optimization (SFO)
 - approximation to Forward Feature Selection
- To scale to large datasets, utilize MapReduce for parallelism
- Histogram Approximation is used to further scalability
- Future Work:
 - Multiple Feature Optimization
 - pairs of features
 - Optimize on metrics other than LogLikelihood

Thank You

Parallel Large Scale Feature Selection for Logistic Regression

Sameer Singh¹ Jeremy Kubica² Scott Larsen² Daria Sorokina³

> ¹Department of Computer Science University of Massachusetts, Amherst

> > ²Google Inc, Pittsburgh

³Department of Computer Science Carnegie Mellon University

SIAM Data Mining, 2009

Histogram Approximation

- For each bin b
 - Mean probability p_{id} of the bin \hat{p}_b
 - Total number of records in the bin N_b
 - Number of records in which $x_d = 1$, N_h^+
- Calculate p'_b using \hat{p}_b and β_d

$$\frac{\partial L}{\partial \beta'_d} = \sum_{b=1}^B N_b^+ - p'_b \cdot N_b$$

$$\frac{\partial^L}{\partial \beta'_d^2} = -\sum_{b=1}^B N_b \cdot p'_b \cdot (1 - p'_b)$$

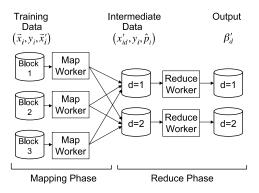


Figure: Map: operate on training data $(\vec{x_i}, y_i, \vec{x_i'})$ to produce intermediate records (y_i, p_i) for each new feature in the record $\vec{x_i'}$. Reduce: operate on intermediate records, computing coefficients for the new features β'_d .