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Motivation Logistic Regression

Logistic Regression

N
G = argmaxy (yi Inpi + (1 —y;)In(1 — pi)>
g i=1
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Motivation Feature Selection

Feature Selection

For D features, train the model O(2P) times
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Motivation Feature Selection

Forward Feature Selection

For D features, train the model O(D?) times
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Single Feature Optimization
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Single Feature Optimization Method

Newton’s Method

eﬁ')z}+xi/(jﬁé

Pia = 1+eg')?i+xi/dﬂé
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Single Feature Optimization Method

Newton’s Method

1 4 ef%+xab;

N
By = argmaxz (yi Inpig + (1 —yi)In(1 — pid)>

]
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Single Feature Optimization Method

Newton’s Method

e/ XXy,

Pida = 1+eg'>?i+xiﬁﬁé

oL N
a5 > Xt (Vi — pia)
d i=1

02L
oot

N
= —> pua(l - pia)xig
i=1
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Single Feature Optimization Histogram Approximation

Histogram Approximation

m As N grows, Newton’s method slows down considerably
m B bins, based on predicted probability of base model
m using only 5 and X
m Newton’s method dependent on B instead of N
EN>>B
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Single Feature Optimization Parallelization

Map Reduce implementation

m Map: Parallel over records

m Input: Base features X;, class y;, new features x/
m Predict using the base model p;
m Output: (x5, (yi, pi)) for every feature x/; in X/
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Map Reduce implementation

m Map: Parallel over records
m Input: Base features X;, class y;, new features x/
m Predict using the base model p;
m Output: (x5, (yi, pi)) for every feature x/; in X/
m Reduce: Parallel over features
m Input: xj, (yi, pi)"
m Use Newton’s method to find 3} that maximizes scoring measure
m With or without histogram approximation
m Output: Estimated coefficient 3
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Single Feature Optimization Parallelization

Map Reduce implementation

m Map: Parallel over records
m Input: Base features X;, class y;, new features x/
m Predict using the base model p;
m Output: (x5, (yi, pi)) for every feature x/; in X/

m Reduce: Parallel over features

® Input: xg, {yi, pi)"

m Use Newton’s method to find 3} that maximizes scoring measure
m With or without histogram approximation

m Output: Estimated coefficient 3

Evaluate the coefficients on test dataset to evaluate utility
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Experiments UCI Datasets

Methods

m IRLS: Iteratively Re-weighted Least Squares
m P. Komarek and A. Moore, ICDM 2005?
m Fast, efficient single machine implementation of Logistic Regression
m Retrain classifier for each candidate feature
m SFO: Single Feature Optimization
m Use IRLS to train the “base” model
m GD: Gradient Method

m S. Perkins and J. Theiler, ICML 2003
m Ranks features according to their gradient on training data
m Parallelize it same way as SFO

http://www.autonlab.org/autonweb/10538.html
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Experiments UCI Datasets

Mushroom Dataset

Base Feature IRLS SFO GD
Features Class -LL -LL Rank | Rank

odor 0.111 | 0.076 1 2
spore-print-color 0.558 | 0.543 2 1
bias gill-color 0.623 | 0.604 3 9
stalk-surface-above | 0.696 | 0.692 5 3
ring-type 0.711 | 0.687 4 8
spore-print-color 0.074 | 0.069 1 5
stalk-surface-above | 0.098 | 0.090 3 3
bias, population 0.099 | 0.092 5 6
odor gill-color 0.099 | 0.091 4 7
stalk-color-below 0.100 | 0.086 2 4

Table: The negative test set log-likelihood for the top features in the
Mushroom data set as selected by IRLS, the corresponding SFO scores, and
rankings from SFO and the gradient method.
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Experiments UCI Datasets

InternetAds Dataset

Single Features for InternetAds Dataset
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Figure: Coverage of the IRLS ranking by SFO and the Gradient method for
the Internet Ads data. The features were ranked by test set log-likelihood.
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Experiments RCV1
RCV1
Round 1 Round 2 Round 3 Round 4 Round 5
bias econ | bias econ | bias econ
bias bias econ muni muni defi | muni defi
shar
econ 283.7 | muni 204.3 | defi 110.2 | shar 106.7 infl 79.5
defi 213.7 | shar 139.3 | shar 106.8 | stat 82.1 | wag 77.1
infl 190.1 | coup 131.3 | stat 90.2 | wag 79.7 | stat 76.5
gdp 182.9 | obli 110.3 | infl 87.2 | profit 79.1 | mood 68.6
muni  176.3 | prof 106.1 | gdp 86.6 infl 74.7 dig 66.0

Table: Top 5 features & estimated improvement on training set loglikelihood.
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Experiments Parallelization

Timing Results
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Figure: Timing (10,000,000 records / 100,000 features)
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Experiments Parallelization

Speedup

Speed Up
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Figure: Speedup (10,000,000 records / 100,000 features)
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Summary

Summary

m Introduce Single Feature Optimization (SFO)
- approximation to Forward Feature Selection

m To scale to large datasets, utilize MapReduce for parallelism
m Histogram Approximation is used to further scalability

m Future Work:

m Multiple Feature Optimization
- pairs of features
m Optimize on metrics other than LogLikelihood
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Extra Slides

Histogram Approximation

m For each binb

m Mean probability piq of the bin py
m Total number of records in the bin Ny
m Number of records in which x4 = 1, NJ

m Calculate pj using p, and Sy

oL 5
= ZNJ_pE)'Nb

90, et
= = — > Np-pp-(1—pp)
(9ﬁd2 b=1
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Map Reduce implementation

Training Intermediate Output
Data Data
(xivy,"x;) (x;wyi’p:) Ba
3
Block |,| Map
1 Worker Y
Reduce d=1
Worker -
3
Block |, Map
2 Worker <
Reduce 4=2
— Worker
Block Map
3 Worker
L I J
Mapping Phase Reduce Phase

Figure: Map: operate on training data (X;, y;, X) to produce intermediate
records (y;, pi) for each new feature in the record x/. Reduce: operate on
intermediate records, computing coefficients for the new features 3.
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