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Motivation Logistic Regression

Logistic Regression

P(y = 1 | ~xi , ~β) =
e~β·~x

1 + e~β·~x

~β = argmax
~β

N
∑

i=1

(

yi ln pi + (1 − yi) ln(1 − pi)

)
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Motivation Feature Selection

Feature Selection

X

Features
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Motivation Feature Selection

Feature Selection

For D features, train the model O(2D) times
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Motivation Feature Selection

Forward Feature Selection

For D features, train the model O(D2) times
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Single Feature Optimization Method

Single Feature Optimization

~β
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Single Feature Optimization Method

Single Feature Optimization

~β β′

d
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Single Feature Optimization Method

Newton’s Method

pid =
e~β·~xi+x ′

idβ′

d

1 + e~β·~xi+x ′

idβ′

d

β ′
d = argmax

β′

d

N
∑

i=1

(

yi ln pid + (1 − yi) ln(1 − pid)

)
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Single Feature Optimization Method

Newton’s Method

pid =
e~β·~xi+x ′

idβ′

d

1 + e~β·~xi+x ′

idβ′

d

∂L
∂β ′

d
=

N
∑

i=1

x ′
id(yi − pid)

∂2L
∂β ′2

d

= −

N
∑

i=1

pid(1 − pid )x ′2
id
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Single Feature Optimization Histogram Approximation

Histogram Approximation

As N grows, Newton’s method slows down considerably
B bins, based on predicted probability of base model

using only ~β and ~x

Newton’s method dependent on B instead of N
N >> B
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Single Feature Optimization Parallelization

Map Reduce implementation

Map: Parallel over records
Input: Base features ~xi , class yi , new features ~x ′

i
Predict using the base model pi

Output: (x ′

id , 〈yi , pi〉) for every feature x ′

id in ~x ′

i

Reduce: Parallel over features
Input: x ′

d , 〈yi , pi〉
n

Use Newton’s method to find β′

d that maximizes scoring measure
With or without histogram approximation
Output: Estimated coefficient β′

d

Evaluate the coefficients on test dataset to evaluate utility
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Experiments UCI Datasets

Methods

IRLS: Iteratively Re-weighted Least Squares
P. Komarek and A. Moore, ICDM 20051

Fast, efficient single machine implementation of Logistic Regression
Retrain classifier for each candidate feature

SFO: Single Feature Optimization
Use IRLS to train the “base” model

GD: Gradient Method
S. Perkins and J. Theiler, ICML 2003
Ranks features according to their gradient on training data
Parallelize it same way as SFO

1http://www.autonlab.org/autonweb/10538.html
Sameer Singh (UMass, Amherst) Parallel Large Scale Feature Selection SDM 2009 16 / 25



Experiments UCI Datasets

Mushroom Dataset

Base Feature IRLS SFO GD
Features Class -LL -LL Rank Rank

odor 0.111 0.076 1 2
spore-print-color 0.558 0.543 2 1

bias gill-color 0.623 0.604 3 9
stalk-surface-above 0.696 0.692 5 3

ring-type 0.711 0.687 4 8
spore-print-color 0.074 0.069 1 5

stalk-surface-above 0.098 0.090 3 3
bias, population 0.099 0.092 5 6
odor gill-color 0.099 0.091 4 7

stalk-color-below 0.100 0.086 2 4

Table: The negative test set log-likelihood for the top features in the
Mushroom data set as selected by IRLS, the corresponding SFO scores, and
rankings from SFO and the gradient method.
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Experiments UCI Datasets

InternetAds Dataset
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Figure: Coverage of the IRLS ranking by SFO and the Gradient method for
the Internet Ads data. The features were ranked by test set log-likelihood.
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Experiments RCV1

RCV1

Round 1 Round 2 Round 3 Round 4 Round 5
bias econ bias econ bias econ

bias bias econ muni muni defi muni defi
shar

econ 283.7 muni 204.3 defi 110.2 shar 106.7 infl 79.5
defi 213.7 shar 139.3 shar 106.8 stat 82.1 wag 77.1
infl 190.1 coup 131.3 stat 90.2 wag 79.7 stat 76.5
gdp 182.9 obli 110.3 infl 87.2 profit 79.1 mood 68.6
muni 176.3 prof 106.1 gdp 86.6 infl 74.7 dig 66.0

Table: Top 5 features & estimated improvement on training set loglikelihood.
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Experiments Parallelization

Timing Results
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Figure: Timing (10,000,000 records / 100,000 features)
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Experiments Parallelization

Speedup
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Figure: Speedup (10,000,000 records / 100,000 features)
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Summary

Summary

Introduce Single Feature Optimization (SFO)
- approximation to Forward Feature Selection

To scale to large datasets, utilize MapReduce for parallelism

Histogram Approximation is used to further scalability

Future Work:
Multiple Feature Optimization
- pairs of features
Optimize on metrics other than LogLikelihood
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Extra Slides

Histogram Approximation

For each bin b
Mean probability pid of the bin p̂b

Total number of records in the bin Nb

Number of records in which xd = 1, N+

b

Calculate p′

b using p̂b and βd

∂L
∂β ′

d

=

B
∑

b=1

N+

b − p′

b · Nb

∂L

∂β ′2
d

= −

B
∑

b=1

Nb · p′

b · (1 − p′

b)
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Extra Slides

Map Reduce implementation

Figure: Map: operate on training data (~xi , yi , ~x ′

i ) to produce intermediate
records (yi , pi) for each new feature in the record ~x ′

i . Reduce: operate on
intermediate records, computing coefficients for the new features β′

d .
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