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Abstract

Complex machine learning models for NLP
are often brittle, making different predic-
tions for input instances that are extremely
similar semantically. To automatically de-
tect this behavior for individual instances,
we present semantically equivalent ad-
versaries (SEAs) – semantic-preserving
perturbations that induce changes in the
model’s predictions. We generalize these
adversaries into semantically equivalent
adversarial rules (SEARs) – simple, uni-
versal replacement rules that induce ad-
versaries on many instances. We demon-
strate the usefulness and flexibility of SEAs
and SEARs by detecting bugs in black-box
state-of-the-art models for three domains:
machine comprehension, visual question-
answering, and sentiment analysis. Via
user studies, we demonstrate that we gener-
ate high-quality local adversaries for more
instances than humans, and that SEARs in-
duce four times as many mistakes as the
bugs discovered by human experts. SEARs
are also actionable: retraining models us-
ing data augmentation significantly reduces
bugs, while maintaining accuracy.

1 Introduction

With increasing complexity of models for tasks like
classification (Joulin et al., 2016), machine compre-
hension (Rajpurkar et al., 2016; Seo et al., 2017),
and visual question answering (Zhu et al., 2016),
models are becoming increasingly challenging to
debug, and to determine whether they are ready for
deployment. In particular, these complex models
are prone to brittleness: different ways of phrasing
the same sentence can often cause the model to

In the United States especially, several high-profile
cases such as Debra LaFave, Pamela Rogers, and
Mary Kay Letourneau have caused increased
scrutiny on teacher misconduct.

(a) Input Paragraph

Q: What has been the result of this publicity?
A: increased scrutiny on teacher misconduct

(b) Original Question and Answer

Q: What haL been the result of this publicity?
A: teacher misconduct
(c) Adversarial Q & A (Ebrahimi et al., 2018)

Q: What’s been the result of this publicity?
A: teacher misconduct

(d) Semantically Equivalent Adversary

Figure 1: Adversarial examples for question an-
swering, where the model predicts the correct an-
swer for the question and input paragraph (1a and
1b). It is possible to fool the model by adversarially
changing a single character (1c), but at the cost of
making the question nonsensical. A Semantically
Equivalent Adversary (1d) results in an incorrect
answer while preserving semantics.

output different predictions. While held-out accu-
racy is often useful, it is not sufficient: practitioners
consistently overestimate their model’s generaliza-
tion (Patel et al., 2008) since test data is usually
gathered in the same manner as training and vali-
dation. When deployed, these seemingly accurate
models encounter sentences that are written very
differently than the ones in the training data, thus
making them prone to mistakes, and fragile with re-
spect to distracting additions (Jia and Liang, 2017).
These problems are exacerbated by the variability
in language, and by cost and noise in annotations,
making such bugs challenging to detect and fix.

A particularly challenging issue is oversensitiv-
ity (Jia and Liang, 2017): a class of bugs where
models output different predictions for very similar
inputs. These bugs are prevalent in image classifi-
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Transformation Rules #Flips

(WP is→WP’s) 70 (1%)
(?→??) 202(3%)

(a) Example Rules

Original: What is the oncorhynchus
also called? A: chum salmon
Changed: What’s the oncorhynchus
also called? A: keta

(b) Example for (WP is→WP’s)

Original: How long is the Rhine?
A: 1,230 km
Changed: How long is the Rhine??
A: more than 1,050,000

(c) Example for (?→??)

Figure 2: Semantically Equivalent Adversarial Rules: For the task of question answering, the proposed
approach identifies transformation rules for questions in (a) that result in paraphrases of the queries, but
lead to incorrect answers (#Flips is the number of times this happens in the validation data). We show
examples of rephrased questions that result in incorrect answers for the two rules in (b) and (c).

cation (Szegedy et al., 2014), a domain where one
can measure the magnitude of perturbations, and
many small-magnitude changes are imperceptible
to the human eye. For text, however, a single word
addition can change semantics (e.g. adding “not”),
or have no semantic impact for the task at hand.

Inspired by adversarial examples for images,
we introduce semantically equivalent adver-
saries (SEAs) – text inputs that are perturbed in
semantics-preserving ways, but induce changes in
a black box model’s predictions (example in Figure
1). Producing such adversarial examples systemati-
cally can significantly aid in debugging ML models,
as it allows users to detect problems that happen
in the real world, instead of oversensitivity only
to malicious attacks such as intentionally scram-
bling, misspelling, or removing words (Bansal
et al., 2014; Ebrahimi et al., 2018; Li et al., 2016).

While SEAs describe local brittleness (i.e. are
specific to particular predictions), we are also inter-
ested in bugs that affect the model more globally.
We represent these via simple replacement rules
that induce SEAs on multiple predictions, such as
in Figure 2, where a simple contraction of “is”after
Wh pronouns (what, who, whom) (2b) makes 70
(1%) of the previously correct predictions of the
model “flip” (i.e. become incorrect). Perhaps more
surprisingly, adding a simple “?” induces mistakes
in 3% of examples. We call such rules semantically
equivalent adversarial rules (SEARs).

In this paper, we present SEAs and SEARs, de-
signed to unveil local and global oversensitivity
bugs in NLP models. We first present an approach
to generate semantically equivalent adversaries,
based on paraphrase generation techniques (Lapata
et al., 2017), that is model-agnostic (i.e. works for
any black box model). Next, we generalize SEAs
into semantically equivalent rules, and outline the
properties for optimal rule sets: semantic equiva-
lence, high adversary count, and non-redundancy.
We frame the problem of finding such a set as a

submodular optimization problem, leading to an
accurate yet efficient algorithm.

Including the human into the loop, we demon-
strate via user studies that SEARs help users un-
cover important bugs on a variety of state-of-the-art
models for different tasks (sentiment classification,
visual question answering). Our experiments indi-
cate that SEAs and SEARs make humans signifi-
cantly better at detecting impactful bugs – SEARs
uncover bugs that cause 3 to 4 times more mistakes
than human-generated rules, in much less time. Fi-
nally, we show that SEARs are actionable, enabling
the human to close the loop by fixing the discov-
ered bugs using a data augmentation procedure.

2 Semantically Equivalent Adversaries

Consider a black box model f that takes a sentence
x and makes a prediction f(x), which we want
to debug. We identify adversaries by generating
paraphrases of x, and getting predictions from f
until the original prediction is changed.

Given an indicator function SemEq(x, x′) that
is 1 if x is semantically equivalent to x′ and 0 oth-
erwise, we define a semantically equivalent adver-
sary (SEA) as a semantically equivalent instance
that changes the model prediction in Eq (1). Such
adversaries are important in evaluating the robust-
ness of f , as each is an undesirable bug.

SEA(x, x′)=1
[

SemEq(x, x′)∧f(x) 6=f(x′)
]

(1)

While there are various ways of scoring semantic
similarity between pairs of texts based on embed-
dings (Le and Mikolov, 2014; Wieting and Gimpel,
2017), they do not explicitly penalize unnatural sen-
tences, and generating sentences requires surround-
ing context (Le and Mikolov, 2014) or training
a separate model. We turn instead to paraphras-
ing based on neural machine translation (Lapata
et al., 2017), where P (x′|x) (the probability of a
paraphrase x′ given original sentence x) is propor-
tional to translating x into multiple pivot languages
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and then taking the score of back-translating the
translations into the original language. This ap-
proach scores semantics and “plausibility” simulta-
neously (as translation models have “built in” lan-
guage models) and allows for easy paraphrase gen-
eration, by linearly combining the paths of each
back-decoder when back-translating.

Unfortunately, given source sentences x and z,
P (x′|x) is not comparable to P (z′|z), as each has
a different normalization constant, and heavily de-
pends on the shape of the distribution around x or
z. If there are multiple perfect paraphrases near x,
they will all share probability mass, while if there
is a paraphrase much better than the rest near z, it
will have a higher score than the ones near x, even
if the paraphrase quality is the same. We thus de-
fine the semantic score S(x, x′) as a ratio between
the probability of a paraphrase and the probability
of the sentence itself:

S(x, x′) = min

(
1,
P (x′|x)

P (x|x)

)
(2)

We define SemEq(x, x′) = 1[S(x, x′) ≥ τ ], i.e.
x′ is semantically equivalent to x if the similarity
score between x and x′ is greater than some thresh-
old τ (which we crowdsource in Section 5). In
order to generate adversaries, we generate a set of
paraphrases Πx around x via beam search and get
predictions on Πx using the black box model until
an adversary is found, or until S(x, x′) < τ . We
may be interested in the best adversary for a partic-
ular instance, i.e. argmaxx′∈Πx

S(x, x′)SEAx(x′),
or we may consider multiple SEAs for generaliza-
tion purposes. We illustrate this process in Figure 3,
where we generate SEAs for a VQA model by gen-
erating paraphrases around the question, and check-
ing when the model prediction changes. The first
two adversaries with highest S(x, x′) are semanti-
cally equivalent, the third maintains the semantics
enough for it to be a useful adversary, and the fourth
is ungrammatical and thus not useful.

3 Semantically Equivalent Adversarial
Rules (SEARs)

While finding the best adversary for a particular
instance is useful, humans may not have time or
patience to examine too many SEAs, and may not
be able to generalize well from them in order to
understand and fix the most impactful bugs. In
this section, we address the problem of generaliz-
ing local adversaries into Semantically Equivalent

What color is the tray? Pink

What colour is the tray? Green
Which color is the tray? Green
What color is it? Green
How color is tray? Green

Figure 3: Visual QA Adversaries: Paraphrasing
questions to find adversaries for the original ques-
tion (top, in bold) asked of a given image. Adver-
saries are sorted by decreasing semantic similarity.

Adversarial Rules for Text (SEARs), search and re-
place rules that produce semantic adversaries with
little or no change in semantics, when applied to a
corpus of sentences. Assuming that humans have
limited time, and are thus willing to look at B
rules, we propose a method for selecting such a set
of rules given a reference dataset X .

A rule takes the form r = (a→c), where the
first instance of the antecedent a is replaced by the
consequent c for every instance that includes a, as
we previously illustrated in Figure 2a. The output
after applying rule r on a sentence x is represented
as the function call r(x), e.g. if r =(movie→film),
r(“Great movie!”) = “Great film!”.

Proposing a set of rules: In order to generalize
a SEA x′ into a candidate rule, we must represent
the changes that took place from x→ x′. We will
use x = “What color is it?” and x′ = “Which color
is it?” from Figure 4 as a running example.

One approach is exact matching: selecting the
minimal contiguous sequence that turns x into x′,
(What→Which) in the example. Such changes may
not always be semantics preserving, so we also
propose further rules by including the immediate
context (previous and/or next word with respect
to the sequence), e.g. (What color→Which color).
Adding such context, however, may make rules
very specific, thus restricting their value. To al-
low for generalization, we also represent the an-
tecedent of proposed rules by a product of their raw
text with coarse and fine-grained Part-of-Speech
tags, and allow these tags to happen in the con-
sequent if they match the antecedent. In the
running example, we would propose rules like
(What color→Which color), (What NOUN→Which
NOUN ), (WP color→Which color), etc.

We generate SEAs and propose rules for every
x ∈ X , which gives us a set of candidate rules
(second box in Figure 4, for loop in Algorithm 1).
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Figure 4: SEAR process. (1) SEAs are generalized into candidate rules, (2) rules that are not semantically
equivalent are filtered out, e.g. r5: (What→Which), (3) rules are selected according to Eq (3), in order to
maximize coverage and avoid redundancy (e.g. rejecting r2, valuing r1 more highly than r4), and (4) a
user vets selected rules and keeps the ones that they think are bugs.

Selecting a set of rules: Given a set of candidate
rules, we want to select a set R such that |R| ≤ B,
and the following properties are met:

1. Semantic Equivalence: Application of the
rules in the set should produce semantically equiv-
alent instances. This is equivalent to considering
rules that have a high probability of inducing se-
mantically equivalent instances when applied, i.e.
E[SemEq(x, r(x))] ≥ 1−δ. This is the Filter step
in Algorithm 1. For example, consider the rule
(What→Which) in Fig 4 which produces some se-
mantically equivalent instances, but also produces
many instances that are unnatural (e.g. “What is
he doing?” → “Which is he doing?”), and is thus
filtered out by this criterion.

2. High adversary count: The rules in the set
should induce as many SEAs as possible in valida-
tion data. Furthermore, each of the induced SEAs
should have as high of a semantic similarity score
as possible, i.e. for each rule r ∈ R we want to
maximize

∑
x∈X S(x, r(x))SEA(x, r(x)). In Fig-

ure 4, r1 induces more and more similar mistakes
when compared to r4, and is thus superior to r4.

3. Non-redundancy: Different rules in the set
may induce the same SEAs, or may induce different
SEAs for the same instances. Ideally, rules in the
set should cover as many instances in the validation
as possible, rather than focus on a small set of
fragile predictions. Furthermore, rules should not
be repetitive to the user. In Figure 4 (mid), r1
covers a superset of r2’s adversaries, making r2
completely redundant and thus not included in R.

Properties 2 and 3 combined suggest a weighted
coverage problem, where a rule r covers an in-
stance x if SEA(x, r(x)), the weight of the connec-
tion being given by S(x, r(x)). We thus want to

Algorithm 1 Generating SEARs for a model
Require: Classifier f , Correct instances X
Require: Hyperparameters, δ, τ , Budget B
R ← {}{Set of rules}
for all x ∈ X do
X ′ = GenParaphrases(X, τ)
A ← {x′ ∈ X ′ | f(x) 6= f(x′)} {SEAs; §2}
R ← R∪ Rules(A)

end for
R ← Filter(R, δ, τ) {Remove low scoring SEARs}
R ← SubMod(R, B) {high count / score, diverse }
return R

find the set of semantically equivalent rules that:

max
R,|R|<B

∑
x∈X

max
r∈R

S(x, r(x))SEA(x, r(x)) (3)

While Eq (3) is NP-hard, the objective is monotone
submodular (Krause and Golovin, 2014), and thus
a greedy algorithm that iteratively adds the rule
with the highest marginal gain offers a constant-
factor approximation guarantee of 1 − 1/e to the
optimum. This is the SubMod procedure in Algo-
rithm 1, represented pictorially in Figure 4, where
the output is a set of rules given to a human, who
judges if they are really bugs or not.

4 Illustrative Examples

Before evaluating the utility of SEAs and SEARs
with user studies, we show examples in state-of-the-
art models for different tasks. Note that we treat
these models as black boxes, not using internals or
gradients in any way when discovering these bugs.

Machine Comprehension: We take the Al-
lenNLP (Gardner et al., 2017) implementation of
BiDaF (Seo et al., 2017) for Machine Comprehen-
sion, and display some high coverage SEARs for it
in Table 1 (also, Figures 1 and 2a). For each rule,



860

SEAR Questions / SEAs f(x) Flips

What is What’s the NASUWT? Trade unions

2%What VBZ→ Teachers in Wales
What’s What is What’s a Hauptlied? main hymn Veni

redemptor gentium

What resource Which resource coal wool

1%What NOUN→ was mined in the Newcastle area?
Which NOUN What health Which health nervous breakdown

problem did Tesla have in 1879? relations

What was So what was Satyagraha

2%What VERB→ Ghandi’s work called? Civil Disobedience
So what VERB What is So what is a new trend Co-teaching

in teaching? educational institutions

What did And what did Tesla an induction motor

2%What VBD→ develop in 1887? laboratory
And what VBD What was And what was journalist sleep

Kenneth Swezey’s job?

Table 1: SEARs for Machine Comprehension

SEAR Questions / SEAs f(x) Flips

WP VBZ→ What has What’s been cut? Cake Pizza 3.3%
WP’s Who is Who’s holding the baby Woman Man

What NOUN→ What Which kind of floor is it? Wood Marble 3.9%
Which NOUN What Which color is the jet? Gray White

color →colour What color colour is the tray? Pink Green 2.2%
What color colour is the jet? Gray Blue

ADV is→ Where is Where’s the jet? Sky Airport 2.1%
ADV’s How is How’s the desk? Messy Empty

Table 2: SEARs for Visual QA

we display two example questions with the corre-
sponding SEA, the prediction (with corresponding
change) and the percentage of “flips” - instances
previously predicted correctly on the validation
data, but predicted incorrectly after the application
of the rule. The rule (What VBZ→What’s) general-
izes the SEA on Figure 1, and shows that the model
is fragile with respect to contractions (flips 2% of
all correctly predicted instances on the validation
data). The second rule uncovers a bug with respect
to simple question rephrasing, while the third and
fourth rules show that the model is not robust to a
more conversational style of asking questions.

Visual QA: We show SEARs for a state-of-the-
art visual question-answering model (Zhu et al.,
2016) in Table 2. Even though the contexts are
different (paragraphs for machine comprehension,
images for VQA), it is interesting that both models
display similar bugs. The fact that VQA is fragile to
“Which” questions is because questions of this form
are not in the training set, while (color→colour)
probably stems from an American bias in data col-
lection. Changes induced by these four rules flip
more than 10% of the predictions in the validation
data, which is of critical concern if the model is
being evaluated for production.

SEAR Reviews / SEAs f(x) Flips

movie → Yeah, the movie film pretty much sucked . Neg Pos 2%
film This is not movie film making . Neg Pos

film → Excellent film movie . Pos Neg 1%
movie I’ll give this film movie 10 out of 10 ! Pos Neg

is →was Ray Charles is was legendary . Pos Neg 4%
It is was a really good show to watch . Pos Neg

this →that Now this that is a movie I really dislike . Neg Pos 1%
The camera really likes her in this that movie. Pos Neg

DET NOUN is The movie is It is terrible Neg Pos 1%
→it is The dialog is It is atrocious Neg Pos

Table 3: SEARs for Sentiment Analysis

Sentiment Analysis: Finally, in Table 3 we dis-
play SEARs for a fastText (Joulin et al., 2016)
model for sentiment analysis trained on movie re-
views. Surprisingly, many of its predictions change
for perturbations that have no sentiment connota-
tions, even in the presence of polarity-laden words.

5 User Studies

We compare automatically discovered SEAs and
SEARs to user-generated adversaries and rules, and
propose a way to fix the bugs induced by SEARs.

Our evaluation benchmark includes two tasks:
visual question answering (VQA) and sentiment
analysis on movie review sentences. We choose
these tasks because a human can quickly look at a
prediction and judge if it is correct or incorrect, can
easily perturb instances, and judge if two instances
in a pair are semantically equivalent or not. Since
our focus is debugging, throughout the experiment
we only considered SEAs and SEARs on examples
that are originally predicted correctly (i.e. every
adversary is also by construction a mistake). The
user interfaces for all experiments in this section
are included in the supplementary material.

5.1 Implementation Details

The paraphrasing model (Lapata et al., 2017) re-
quires translation models to and from different
languages. We train neural machine translation
models using the default parameters of OpenNMT-
py (Klein et al., 2017) for English↔Portuguese
and English↔French models, on 2 million and 1
million parallel sentences (respectively) from Eu-
roParl, news, and other sources (Tiedemann, 2012).
We use the spacy library (http://spacy.io)
for POS tagging. For SEAR generation, we set
δ = 0.1 (i.e. at least 90% equivalence). We gener-
ate a set of candidate adversaries as described in
Section 2, and ask mechanical turkers to judge them

http://spacy.io
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Human vs SEA Human vs HSEA

Neither 145 (48%) 127 (42%)
Only Human 47 (16%) 38 (13%)
Only SEA 54 (18%) 72 (24%)
Both 54 (18%) 63 (21%)

(a) Visual Question-Answering

Human vs SEA Human vs HSEA

Neither 177 (59%) 161 (54%)
Only Human 45 (15%) 40 (13%)
Only SEA 47 (16%) 63 (21%)
Both 31 (10%) 36 (12%)

(b) Sentiment Analysis

Table 4: Finding Semantically Equivalent Ad-
versaries: we compare how often humans produce
semantics-preserving adversaries, when compared
to our automatically generated adversaries (SEA,
left) and our adversaries filtered by humans (HSEA,
right). There are four possible outcomes: neither
produces a semantic equivalent adversary (i.e. they
either do not produce an adversary or the adversary
produced is not semantically equivalent), both do,
or only one is able to do so.

for semantic equivalence. Using these evaluations,
we identify τ = 0.0008 as the value that minimizes
the entropy in the induced splits, and use it for
the remaining experiments. Source code and pre-
trained language models are available at https:
//github.com/marcotcr/sears.

For VQA, we use the multiple choice telling
system and dataset of Zhu et al. (2016), using
their implementation, with default parameters. The
training data consists of questions that begin with
“What”, “Where”, “When”, “Who”, “Why”, and
“How”. The task is multiple choice, with four pos-
sible answers per instance. For sentiment analy-
sis, we train a fastText (Joulin et al., 2016) model
with unigrams and bigrams (embedding size of 50)
on RottenTomato movie reviews (Pang and Lee,
2005), and evaluate it on IMDB sentence-sized
reviews (Kotzias et al., 2015), simulating the com-
mon case where a model trained on a public dataset
is applied to new data from a similar domain.

5.2 Can humans find good adversaries?

In this experiment, we compare our method for
generating SEAs with user’s ability to discover
semantic-preserving adversaries. We take a ran-
dom sample of 100 correctly-predicted instances
for each task. In the first condition (human), we
display each instance to 3 Amazon Mechanical

Turk workers, and give them 10 attempts at creating
semantically equivalent adversaries (with immedi-
ate feedback as to whether or not their attempts
changed the prediction). Next, we ask them to
choose the adversary that is semantically closest
to the original instance, out of the candidates they
generated. In the second condition (SEA), we gen-
erate adversaries for each of the instances, and pick
the best adversary according to the semantic scorer.
The third condition (HSEA) is a collaboration be-
tween our method and humans: we take the top 5
adversaries ranked by S(x, x′), and ask workers to
pick the one closest to the original instance, rather
than asking them to generate the adversaries.

To evaluate whether the proposed adversaries
are semantically equivalent, we ask a separate set
of workers to evaluate the similarity between each
adversary and the original instance (with the image
as context for VQA), on a scale of 1 (completely
unrelated) to 5 (exactly the same meaning). Each
adversary is evaluated by at least 10 workers, and
considered equivalent if the median score ≥ 4. We
thus obtain 300 comparisons between human and
SEA, and 300 between human and HSEA.

The results in Table 4a and 4b are consistent
across tasks: both models are susceptible to SEAs
for a large fraction of predictions, and our fully au-
tomated method is able to produce SEAs as often as
humans (left columns). On the other hand, asking
humans to choose from generated SEAs (HSEA)
yields much better results than asking humans to
generate them (right columns), or using the high-
est scored SEA. The semantic scorer does make
mistakes, so the top adversary is not always seman-
tically equivalent, but a good quality SEA is often
in the top 5, and is easily identified by users.

On both datasets, the automated method or hu-
mans were able to generate adversaries at the ex-
clusion of the other roughly one third of the time,
which indicates that they do not generate the same
adversaries. Humans generate paraphrases differ-
ently than our method: the average character edit
distance of our SEAs is 6.2 for VQA and 9.0 for
Sentiment, while for humans it is 18.1 and 43.3, re-
spectively. This is illustrated by examples in Table
5 - in Table 5a we see examples where very com-
pact changes generate adversaries (humans were
not able to find these changes though). The exam-
ples in Table 5b indicate that humans can generate
adversaries that: (1) make use of the visual context
in VQA, which our method does not, and (2) sig-

https://github.com/marcotcr/sears
https://github.com/marcotcr/sears
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Dataset Original SEA

VQA Where are the men? Where are the males?
What kind of meat is on the
boy’s plate?

What sort of meat is on the
boy’s plate?

Sentiment They are so easy to love,
but even more easy to
identify with.

They’re so easy to love, but
even more easy to identify
with.

Today the graphics are crap. Today, graphics are bullshit.

(a) Automatically generated adversaries, examples where hu-
mans failed to generate SEAs (Only SEA)

Dataset Original Human-generated SEA

VQA How many suitcases? How many suitcases are sit-
ting on the shelf?

Where is the blue van? What is the blue van’s loca-
tion?

Sentiment (very serious spoilers) this
movie was a huge disap-
pointment.

serious spoilers this movie
did not deliver what I hoped

Also great directing and
photography.

Photography and directing
were on point.

(b) Human generated adversaries, examples where our approach
failed to generate SEAs (Only Human)

Table 5: Examples of generated adversaries

nificantly change the sentence structure, which the
translation-based semantic scorer does not.

5.3 Can experts find high-impact bugs?

Here we investigate whether experts are able to
detect high-impact global bugs, i.e. devise rules
that flip many predictions, and compare them to
generated SEARs. Instead of AMT workers, we
have 26 expert subjects: students, graduates, or pro-
fessors who have taken at least a graduate course in
machine learning or NLP1. The experiment setup
is as follows: for each task, subjects are given an
interface where they see examples in the validation
data, perturb those examples, and get predictions.
The interface also allows them to create search and
replace rules, with immediate feedback on how
many mistakes are induced by their rules. They
also see the list of examples where the rules apply,
so they can verify semantic equivalence. Subjects
are instructed to try to maximize the number of mis-
takes induced in the validation data (i.e. maximize
“mistake coverage”), but only through semantically
equivalent rules. They can try as many rules as
they like, and are asked to select the best set of at
most 10 rules at the end. This is quite a challeng-
ing task for humans (yet another reason to prefer
algorithmic approaches), but we are not aware of
any existing automated methods. Finally, we in-

1We have an IRB/consent form, and personal information
was only collected as needed to compensate subjects
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Figure 5: Mistakes induced by expert-generated
rules (green), SEARs (blue), and a combination of
both (pink), with standard error bars.
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Figure 6: Time for users to create rules (green) and
to evaluate SEARs (blue), with standard error bars

struct subjects they could finish each task in about
15 minutes (some took longer, some ended earlier),
in order to keep the total time reasonable.

After creating their rules for VQA and sentiment
analysis, the subjects evaluate 20 SEARs (one rule
at a time) for each task, and accept only semanti-
cally equivalent rules. When a subject rejects a rule,
we recompute the remaining set according to Eq (3)
in real time. If a subject accepts more than 10 rules,
only the first 10 are considered, in order to ensure a
fair comparison against the expert-generated rules.

We compare expert-generated rules with ac-
cepted SEARs (each subject’s rules are compared
to the SEARs they accepted) in terms of the per-
centage of the correct predictions that “flip” when
the rules are applied. This is what we asked the
subjects to maximize, and all the rules were ones
deemed to be semantic equivalent by the subjects
themselves. We also consider the union of expert-
generated rules and accepted SEARs. The results
in Figure 5 show that on both datasets, the filtered
SEARs induce a much higher rate of mistakes than
the rules the subjects themselves created, with a
small increase when the union of both sets is taken.
Furthermore, subjects spent less time evaluating
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Error rate
Validation Sensitivity

Visual QA
Original Model 44.4.% 12.6%
SEAR Augmented 45.7 % 1.4%

Sentiment Analysis
Original Model 22.1% 12.6%
SEAR Augmented 21.3% 3.4%

Table 6: Fixing bugs using SEARs: Effect of re-
training models using SEARs, both on original
validation and on sensitivity dataset. Retraining
significantly reduces the number of bugs, with sta-
tistically insignificant changes to accuracy.

SEARs than trying to create their own rules (Fig-
ure 6). SEARs for sentiment analysis contain fewer
POS tags, and are thus easier to evaluate for seman-
tic equivalence than for VQA.

Discovering these bugs is hard for humans (even
experts) without SEARs: not only do they need to
imagine rules that maintain semantic equivalence,
they must also discover the model’s weak spots.
Making good use of POS tags is also a challenge:
only 50% of subjects attempt rules with POS tags
for VQA, 36% for sentiment analysis.

Experts accepted 8.69 rules (on average) out of
20 for VQA as semantically equivalent, and 17.32
out of 20 for sentiment analysis. Similar to the
previous experiment, errors made by the seman-
tic scorer lead to rules that are not semantically
equivalent (e.g. Table 7). With minimal human
intervention, however, SEARs vastly outperform
human experts in finding impactful bugs.

5.4 Fixing bugs using SEARs

Once such bugs are discovered, it is natural to want
to fix them. The global and deterministic nature
of SEARs make them actionable, as they represent
bugs in a systematic manner. Once impactful bugs
are identified, we use a simple data augmentation
procedure: applying SEARs to the training data,
and retraining the model on the original training
augmented with the generated examples.

We take the rules that are accepted by ≥ 20 sub-
jects as accepted bugs, a total of 4 rules (in Table 2)
for VQA, and 16 rules for sentiment (including
ones in Table 3). We then augment the training data
by applying these rules to it, and retrain the models.
To check if the bugs are still present, we create
a sensitivity dataset by applying these SEARs to
instances predicted correctly on the validation. A
model not prone to the bugs described by these

rules should not change any of its predictions, and
should thus have error rate 0% on this sensitivity
data. We also measure accuracy on the original
validation data, to make sure that our bug-fixing
procedure is not decreasing accuracy.

Table 6 shows that the incidence of these errors
is greatly reduced after augmentation, with negli-
gible changes to the validation accuracy (on both
tasks, the changes are consistent with the effect
of retraining with different seeds). These results
show that SEARs are useful not only for discover-
ing bugs, but are also actionable through a simple
augmentation technique for any model.

6 Related Work

Previous work on debugging primarily focuses on
explaining predictions in validation data in order to
uncover bugs (Ribeiro et al., 2016, 2018; Kulesza
et al., 2011), or find labeling errors (Zhang et al.,
2018; Koh and Liang, 2017). Our work is com-
plementary to these techniques, as they provide no
mechanism to detect oversensitivity bugs. We are
able to uncover these bugs even when they are not
present in the data, since we generate sentences.

Adversarial examples for image recognition
are typically indistinguishable to the human
eye (Szegedy et al., 2014). These are more of
a security concern than bugs per se, as images
with adversarial noise are not “natural”, and not
expected to occur in the real world outside of tar-
geted attacks. Adversaries are usually specific to
predictions, and even universal adversarial pertur-
bations (Moosavi-Dezfooli et al., 2017) are not
natural, semantically meaningful to humans, or ac-
tionable. “Imperceptible” adversarial noise does
not carry over from images to text, as adding or
changing a single word in a sentence can drastically
alter its meaning. Jia and Liang (2017) recognize
that a true analog to detect oversensitivity would
need semantic-preserving perturbations, but do not
pursue an automated solution due to the difficulty
of paraphrase generation. Their adversaries are
whole sentence concatenations, generated by man-
ually defined rules tailored to reading comprehen-
sion, and each adversary is specific to an individual
instance. Zhao et al. (2018) generate natural text
adversaries by projecting the input data to a la-
tent space using a generative adversarial networks
(GANs), and searching for adversaries close to the
original instance in this latent space. Apart from
the challenge of training GANs to generate high
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quality text, there is no guarantee that an example
close in the latent space is semantically equiva-
lent. Ebrahimi et al. (2018), along with propos-
ing character-level changes that are not semantic-
preserving, also propose a heuristic that replaces
single words adversarially to preserve semantics.
This approach not only depends on having white-
box access to the model, but is also not able to
generate many adversaries (only ∼ 1.6% for sen-
timent analysis, compare to ∼ 33% for SEAs in
Table 4b). Developed concurrently with our work,
Iyyer et al. (2018) proposes a neural paraphrase
model based on back-translated data, which is able
to produce paraphrases that have different sentence
structures from the original. They use paraphrases
to generate adversaries and try to post-process non-
sensical outputs, but they do not explicitly reject
non-semantics preserving ones, nor do they try to
induce rules from individual adversaries. In any
case, their adversaries are also useful for data aug-
mentation, in experiments similar to ours.

In summary, previous work on text adversaries
change semantics, only generate local (instance-
specific) adversaries (Zhao et al., 2018; Iyyer
et al., 2018), or are tailored for white-box mod-
els (Ebrahimi et al., 2018) or specific tasks (Jia and
Liang, 2017). In contrast, SEAs expose oversensi-
tivity for specific predictions of black-box models
for a variety of tasks, while SEARs are intuitive
and actionable global rules that induce a high num-
ber of high-quality adversaries. To our knowledge,
we are also the first to evaluate human performance
in adversarial generation (semantics-preserving or
otherwise), and our extensive evaluation shows that
SEAs and SEARs detect individual bugs and gen-
eral patterns better than humans can.

7 Limitations and Future Work

Having demonstrated the usefulness of SEAs and
SEARs in a variety of domains, we now describe
their limitations and opportunities for future work.

Semantic scoring errors: Paraphrasing is still
an active area of research, and thus our semantic
scorer is sometimes incorrect in evaluating rules
for semantic equivalence. We show examples of
SEARs that are rejected by users in Table 7 – the se-
mantic scorer does not sufficiently penalize preposi-
tion changes, and is biased towards common terms.
The presence of such errors is why we still need
humans in the loop to accept or reject SEARs.

SEAR Questions / SEAs f(x)

on →in What is on in the background? A building Mountains
What is on? in Lights The television

VBP→is Where are is the water bottles Table Vending Maching
Where are is the people gathered living room kitchen

VERB on
→ What is on the background? A building Mountains

VERB What are the planes parked on? Concrete landing strip

Table 7: SEARs for VQA that are rejected by users

Other paraphrase limitations: Paraphrase
models based on neural machine translation are
biased towards maintaining the sentence structure,
and thus do not produce certain adversaries
(e.g. Table 5b), which recent work on para-
phrasing (Iyyer et al., 2018) or generation using
GANs (Zhao et al., 2018) may address. More
critically, existing models are inaccurate for long
texts, restricting SEAs and SEARs to sentences.

Better bug fixing: Our data augmentation has
the human users accept/reject rules based on
whether or not they preserve semantics. Develop-
ing more effective ways of leveraging the expert’s
time to close the loop, and facilitating more inter-
active collaboration between humans and SEARs
are exciting areas for future work.

8 Conclusion

We introduced SEAs and SEARs – adversarial ex-
amples and rules that preserve semantics, while
causing models to make mistakes. We presented
examples of such bugs discovered in state-of-the-
art models for various tasks, and demonstrated via
user studies that non-experts and experts alike are
much better at detecting local and global bugs in
NLP models by using our methods. We also close
the loop by proposing a simple data augmentation
solution that greatly reduced oversensitivity while
maintaining accuracy. We demonstrated that SEAs
and SEARs can be an invaluable tool for debug-
ging NLP models, while indicating their current
limitations and avenues for future work.
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