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Motivation

• Graphical models are used in a number of information extraction tasks

• Recently, models are getting larger and denser
• Coreference Resolution [Culotta et al. NAACL 2007]

• Relation Extraction [Riedel et al. EMNLP 2010, Poon & Domingos EMNLP 2009]

• Joint Inference [Finkel & Manning. NAACL 2009, Singh et al. ECML 2009]

• Inference is difficult, and approximations have been proposed
• LP-Relaxations [Martins et al. EMNLP 2010]

• Dual Decomposition [Rush et al. EMNLP 2010]

• MCMC-Based [McCallum et al. NIPS 2009, Poon et al. AAAI 2008]

Without parallelization, these approaches have restricted scalability



Motivation

Contributions:

1 Distribute MAP Inference for a large, dense factor graph
• 1 million variables, 250 machines

2 Incorporate sharding as variables in the model
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Factor Graphs

Represent distribution over variables Y using factors ψ.

p(Y = y) ∝ exp
∑
yc⊆y

ψc(yc)

Note: Set of factors is different of every assignment Y = y ({ψ}y )
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MAP1 Inference

We want to find the best configuration according to the model,

ŷ = arg max
y

p(Y = y)

= arg max
y

exp
∑
yc⊆y

ψc(yc)

Computational bottlenecks:

1 Space of Y is usually enormous (exponential)

2 Even evaluating
∑
yc⊆y

ψc(yc) for each y may be polynomial

1MAP = maximum a posteriori
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MCMC for MAP Inference

Initial Configuration y = y0

for (num samples):

1 Propose a change to y to get configuration y ′

(Usually a small change)

2 Acceptance probability: α(y , y ′) = min

(
1,
(
p(y ′)
p(y)

)1/t
)

(Only involve computations local to the change)

3 if Toss(α): Accept the change, y = y ′

return y

p(y ′)

p(y)
= exp

∑
y ′
c⊆y ′

ψc(y ′c)−
∑
yc⊆y

ψc(yc)


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Mutually Exclusive Proposals

Let {ψ}y
′

y be the set of factors used to evaluate a proposal y → y ′

i.e. {ψ}y ′
y =

(
{ψ}y ∪ {ψ}y ′

)
−
(
{ψ}y ∩ {ψ}y ′

)
Consider two proposals y → ya and y → yb such that,

{ψ}yay ∩ {ψ}yby = {}

Completely different set of factors are required to evaluate these proposals.

These two proposals can be evaluated (and accepted) in parallel.
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Distributed Inference
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Distributed Inference
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Inference
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Distributed Inference

Combine
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Input Features

m1

m2

m3

m4

m5

Define similarity between mentions, φ :M2 → R

• φ(mi ,mj) > 0: mi ,mj are similar

• φ(mi ,mj) < 0: mi ,mj are dissimilar

We use cosine similarity of the context bag of words:

φ(mi ,mj) = cosSim({c}i , {c}j)− b

Sameer Singh (UMass, Amherst) Distributed MAP Inference LCCC, NIPS 2010 Workshop 7 / 19



Model and Inference Coreference Hierarchical Models Large-Scale Experiments Related Work Conclusions

Graphical Model

The random variables in our model are entities (E ) and mentions (M)
For any assignment to these entities (E = e), we define the model score:

p(E = e) ∝ exp

 ∑
mi∼mj

ψa(mi ,mj) +
∑

mi�mj

ψr (mi ,mj)


where ψa(mi ,mj) = waφ(mi ,mj), and

ψr (mi ,mj) = −wrφ(mi ,mj)

m1

m2

m3

m4

m5
e1

e2
For the following configuration,

p(e1, e2) ∝ exp
{

wa (φ12 + φ13 + φ23 + φ45)

− wr (φ15 + φ25 + φ35

+φ14 + φ24 + φ34)
}

1 Space of E is Bell Number(n) in number of mentions
2 Evaluating model score for each E = e is O(n2)
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MCMC for MAP Inference

m1

m2
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e1

e2
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m5e1

e2

m3

p(e) ∝ exp{wa (φ12 + φ13 + φ23 + φ45)

−wr (φ15 + φ25 + φ35 + φ14 + φ24 + φ34)}
p(é) ∝ exp{wa (φ12 + φ34 + φ35 + φ45)

−wr (φ15 + φ25 + φ13 + φ14 + φ24 + φ23)

log
p(é)

p(e)
= wa (φ34 + φ35 − φ13 − φ23)− wr (φ13 + φ23 − φ34 − φ35)
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Mutually Exclusive Proposals
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Results
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Sub-Entities

• Consider an accepted move for
a mention
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Sub-Entities

• Ideally, similar mentions should
also move to the same entity

• Default proposal function does
not utilize this

• Good proposals become more
rare with larger datasets
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Sub-Entities

• Include Sub-Entity variables

• Model score is used to sample
sub-entity variables

• Propose moves of mentions in a
sub-entity simultaneously
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Super-Entities

Random Distribution

• Random distribution may not
assign similar entities to the
same machine

• Probability that similar entities
will be assigned to the same
machine is small
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Super-Entities

Model-Based 
Distribution

• Augment model with
Super-Entities variables

• Entities in the same super-entity
are assigned the same machine

• Model score is used to sample
super-entity variables
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Hierarchical Representation

Super Entities

Entities

Sub-Entities

• Factors

• Affinity factors between
mentions

sub-entities
entities

in the same
sub-entities

entities
super-entities

• Repulsion factors are similarly symmetric across levels

• Sampling: Fix variables of two levels, sample the remaining level
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Evaluation
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Preliminary Large-Scale Experiments

Data

• New York Times Annotated Corpus [Sandhous LDC 2008]

20 years of articles (1987-2007)

• prune rare names (<1000): ∼1 million person name mentions

Evaluation

• Automated labels are too noisy for evaluation

• Instead, we estimate the speed of inference
- trust the model to accept good proposals
- observe the number of predicted entities
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Speed of Inference
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Related Work

• GraphLab [Low et al. UAI 2010]

• how do we represent dynamic graphs
• how do we represent hierarchical models

• Graph Splashing [Gonzalez et al. UAI 2009]

• graph structure changes with every configuration
• BP messages are enormous for exponential-domain variables

• Topic Models [Smola & Narayanmurthy. VLDB 2010, Asuncion et al. NIPS 2009]

• restrictions since they are calculating probabilities
• we allow non-random distribution and customized proposals
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Conclusions

1 propose distributed inference for graphical models

2 enable distributed cross-document coreference

3 improve sharding with latent hierarchical variables

4 demonstrate utility on large datasets

Future Work:

• more scalability experiments

• study mixing and convergence properties

• add more expressive factors

• supervision: labeled data, noisy evidences
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