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Abstract— Near real-time building damage mapping is an
indispensable prerequisite for governments to make decisions
for disaster relief. With high-resolution synthetic aperture
radar (SAR) systems, such as TerraSAR-X, the provision of
such products in a fast and effective way becomes possible.
In this letter, a deep learning-based framework for rapid regional
tsunami damage recognition using post-event SAR imagery is
proposed. To perform such a rapid damage mapping, a series of
tile-based image split analysis is employed to generate the data
set. Next, a selection algorithm with the SqueezeNet network
is developed to swiftly distinguish between built-up (BU) and
nonbuilt-up regions. Finally, a recognition algorithm with a
modified wide residual network is developed to classify the
BU regions into wash away, collapsed, and slightly damaged
regions. Experiments performed on the TerraSAR-X data from
the 2011 Tohoku earthquake and tsunami in Japan show a
BU region extraction accuracy of 80.4% and a damage-level
recognition accuracy of 74.8%, respectively. Our framework
takes around 2 h to train on a new region, and only several
minutes for prediction.

Index Terms— Deep neural networks, framework, post-
event TerraSAR-X imagery, rapid, regional tsunami damage
recognition.

I. INTRODUCTION

NATURAL disasters, especially mega-tsunamis, are rapid
and disastrous events that pose great threat to people’s

life and properties [1]. To support government’s decision-
making for postdisaster relief efforts, near real-time informa-
tion of the building damage in affected areas is crucial [2].
Satellite remote sensing, especially active sensors such as
the synthetic aperture radar (SAR), is a useful tool for
building damage estimation because of its rapid and large-
scale earth observation performance [3]. In earlier stud-
ies, a series of multitemporal SAR imagery-based change
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detection techniques was proposed for tsunami damage assess-
ment [4], [5]. However, these methods are greatly limited when
the predisaster SAR image is not available.

To generate a damage estimation method soon after a natural
disaster with less dependence on preevent remote sensing
data, there is an ongoing interest in developing building dam-
age estimation techniques based on post-event SAR imagery.
One approach aims to identify physical polarimetric SAR
features [6], [7]. The advantage of this method is that it
analyzes the damage from the essence of remote sensing
by exploring the physical model of microwave scattering.
However, the unavailability of fully polarimetric SAR data
in real-word applications makes this method less practical.
Another approach is based on a statistical learning method,
where a series of texture features and polarimetric SAR
features is employed to estimate building damage under
the framework of machine learning [8], [9]. This method
does achieve high accuracy; however, it requires manual and
time-consuming extraction and selection of high-dimensional
features, which limits the applicability of this method to
meet the needs of a rapid disaster emergency response.
In another method [10], bright curvilinear features derived
from the geometry of man-made structures in SAR images
are employed to detect building damage. These carefully
outlined visual features are found to improve the accuracy
of building damage recognition. This finding inspires us to
explore the value of visual pattern information of SAR imagery
for achieving high-precision damage recognition.

Considering the limitations of traditional methods, it is
beneficial to develop a framework that not only enhances the
speed and level of automation but also improves the efficiency
of damage recognition. Deep learning has the potential to
solve this problem because of its high ability of automatic
feature learning and visual pattern recognition [11]. In addi-
tion, deep learning techniques have recently demonstrated a
great potential in many different SAR imagery recognition
tasks [12], [13]. With these inspirations in mind, this letter
introduces a new framework of tsunami damage recognition.
This framework is original as it is independent of preevent
SAR and provides an automatic way to extract built-up (BU)
area. Most importantly, this framework introduces a novel deep
learning algorithm that achieves high accuracy and efficiency.

II. DATA AND STUDY AREA

This letter focuses on the Pacific coast of the Tohoku region,
Japan, which was severely damaged by the 2011 Tohoku
earthquake tsunami, as shown in Fig. 1(a).
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Fig. 1. Study area and data set used in this letter. (a) Location of the
Tohoku region in Japan. (b) Post-event TerraSAR-X data from Tohoku region
in Japan. (c) GTD of tsunami affected buildings in the Tohoku region in Japan.
(d) Zoomed-in affected area.

The TerraSAR-X data used in this letter were acquired
on March 12, 2011 (UTC) covering the Pacific coast of
the Miyagi prefecture, Japan. The data were acquired in
the StripMap mode with HH polarization in a right looking
descending path. The center incident angle was 37.3°. The data
were an enhanced ellipsoid-corrected product resampled into
a 1.25-m square pixel size. The ground truth data (GTD) were
provided by the Ministry of Land Infrastructure, Transport
and Tourism (MLIT) [1] in a building footprint shape format
with seven damage categories (“no damage,” “minor damage,”
“moderate damage,” “major damage,” “complete damage,”
“collapsed,” and “washed away”), as shown in Fig. 1(c).
A zoomed-in affected area of the GTD in Ishinomaki city
is shown in Fig. 1(d).

III. DAMAGE RECOGNITION FRAMEWORK

We propose a framework based on deep convolutional
neural networks to achieve rapid building damage recognition
from SAR imagery. The framework is shown in Fig. 2.
It consists of three major procedures: data preprocessing,
BU region selection, and regional damage-level recognition.

A. Data Preprocessing

To generate proper and labeled image data for training and
testing, a series of steps for data preprocessing is required.
Our data preprocessing includes four steps: processing of SAR
imagery, tile-based image split analysis [see Fig. 2(a)], label
generation for image data [see Fig. 2(b)], and train-test data
split.

1) Processing of SAR Imagery: The raw TerraSAR-X data
is first transformed from digital numbers to sigma nought (dB).
Then, each image is processed using the Lee filter with a
kernel size of 3 × 3 pixels to reduce the image noise. Next,
each image is subsampled into a pixel size of 1.25 m followed
by a normalization of pixel values into a range of 0–255.

2) Tile-Based Image Split Analysis: First, a tile-based image
split analysis technique is employed to divide TerraSAR
scene into quadratic subimages with the predefined tiles

Fig. 2. Framework of the study. Descriptions in Section III.

of 128 × 128 pixels. Then, the ancillary data (i.e., building
footprint vector layer) containing the position and spatial dis-
tribution of the affected buildings are used for tiles selection.
In this step, only the tiles that intersect or contain at least one
building are kept. Those areas are then split into subsamples
with a tile size of 64×64 pixels. A larger quadratic size would
result in too many buildings in one tile, and a smaller quadratic
size would increase the number of buildings split into multiple
tiles.

3) Label Generation for Image Data: A tile with only
limited number of buildings is not sufficient to be used as a
suitable BU sample, and the feature maps to determine BU and
nonbuilt-up (NBU) regions are different from those of building
damage patterns. Hence, we first select BU regions with one
neural network, and then conduct damage-level mapping only
on those regions with another neural network.

Considering the average building area size and coverage
ratio, to select tiles with adequate building information and
coverage, in this letter, tiles containing and/or intersecting no
less than seven buildings are defined as BU regions, otherwise
as NBU regions. For the BU regions, the GTD is used to
generate a sample database with different damage levels. The
MLIT building damage data are reclassified into three classes:
“washed away building,” “collapsed building,” or “slightly
damaged building” based on the similarity of damage degree
[see Fig. 2(c)]. Tiles where the majority of building are
“washed away” are labeled as “washed away regions,” where
the majority of buildings are “collapsed” are labeled as
“collapsed region,” and others as “slightly damaged regions.”
Such a majority criterion is regarded as a logical solution
focusing more on the damage information that counts as the
largest proportion within each tile.

4) Train-Test Data Split: For training and testing purposes,
we adopt a tenfold cross validation [14], [15]: split 90% of data
as training set and 10% as testing (validation) set, and create
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TABLE I

STRUCTURE OF OUR SQUEEZENET

tenfold of such a selection to make ten nonoverlapping testing
sets covering all data. Each fold is to be trained independently.
Using subsets of the whole database as validation sets, cross
validation serves as an effective method to relieve overfitting
problems and provide an insight on how the trained model
will generalize to other independent data sets. To alleviate the
problem of insufficient training samples and sample imbal-
ance, we adopted data augmentation techniques [16], [17]
of mirroring (upside-down and left-to-right) and rotating
(90°, 180°, and 270°) images. Such methods are able to
balance classes with insufficient samples to the same size
as others, and enlarge the whole data set by applying data
augmentation to all images.

B. Built-Up Region Selection

We adopt SqueezeNet [18] as our selection network
[see Fig. 2(d)] to rapidly extract the BU regions. Two main
reasons account for our choice. First, it has far fewer parame-
ters and thus could be trained much faster than other popular
networks, even 50 times fewer parameters than AlexNet [19].
Second, since SAR images generally contain less information
than high-resolution optical images due to spatial resolution
limitations, improving the complexity of deep neural networks
will not significantly improve the prediction result, and may
even worsen it. Table I shows the structure of our SqueezeNet.

Our SqueezeNet is characterized by the eight squeeze-
expand blocks and a global average polling layer [20]. These
squeeze-expand blocks greatly reduce parameters in the con-
volution structure. After the eight blocks, instead of using fully
connected layers, we use a global average polling layer to com-
bine feature responses from the convolutional layers, which
further reduces the parameters and helps improve prediction
accuracy. The output of the global average pooling layer is a
binary number indicating whether the input image should be
dropped before recognition or not.

C. Regional Damage-Level Recognition

We adopt a modified version of wide residual net-
work (WRN) [21] for recognition, as shown in Fig. 2(e).
The WRN is different from the original residual net-
work [22] (Resnet) in that it has wider convolutional channels
and fewer convolutional layers, yet provides better overall
prediction accuracy. Our model has nine convolutional layers
with four times width of convolution channels compared
with Resnet. Moreover, we introduce extra pixel-level image

TABLE II

STRUCTURE OF OUR WRN

TABLE III

TEST ACCURACY OF DIFFERENT SELECTION NETWORK STRUCTURES

encoding layers, Pi xel1 and Pi xel2 in our model. They are
fully connected layers that directly encode pixelwise value
from the input image. After the residual blocks and a global
average pooling layer, we add two additional fully connected
layers FC1 and FC2 to the network. Then, we concate-
nate FC1 with Pi xel1 and FC2 with Pi xel2. This helps
extract pixel-level information. Table II shows our model
(WRN-9-4 with pixel-level encoding).

The argmax output of the final fully connected layer repre-
sents the damage level of the corresponding input region.

IV. RESULT AND DISCUSSION

A. Network Structures for Built-Up Region Selection

Table III shows the comparison of test accuracy among
different network structures for BU region selection with
tenfold cross validation. We use mirroring and rotation to
balance classes with insufficient samples.

We observe that SqueezeNet is a desirable balance between
accuracy and speed, since other methods have similar results
but far more parameters. For the training details, we set
learning rate as 0.01 for the first 50 000 steps, 0.001 for
the next 50 000 steps for SqueezeNet, and similar steps with
other nets depending on their structure. We use a batch size
of 32, a momentum of 0.9, and a weight decay of 0.0005.
It generally takes around 1 h to train our SqueezeNet on a
GTX TITAN X GPU under the Caffe framework [24]. We use
mean shift, mirroring, and rotation for data augmentation.
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Fig. 3. Accuracy and loss curves. (a) Accuracy of our SqueezeNet model.
(b) Loss of our SqueezeNet model. (c) Accuracy of WRN-9-4 models.
(d) Loss of WRN-9-4 models. Training and testing of (c) and (d) were
conducted independently. All curves are generated as mean values of cross
validation.

TABLE IV

TEST ACCURACY OF DIFFERENT RECOGNITION NETWORK STRUCTURES

The second fastest model is AlexNet, which takes 2–5 h
depending on channel sizes. Resnet and WRN take around 6 h.
Fig. 3(a) and (b) shows the accuracy and loss curve of our
model.

B. Network Structures for Damage-Level Recognition

Table IV shows the test accuracy among different network
structures for regional damage-level recognition with tenfold
cross validation. We modify the layer stride in some models
to adjust input size to 64 × 64. We use mirroring and rotation
to balance classes with insufficient samples.

For models with extra encoding layers, we first train the
original model only, then add the additional fully connected
encoding layers, and freeze the parameters of all convolu-
tional layers. More specifically, for our model (WRN-9-4 with
pixel-level encoding), we train 40 000 steps with learning
rate as 0.001 for the original model and 20 000 steps with
learning rate as 0.0001 for encoding layers. We adopt the same
hyperparameters as BU region selection. It takes around 1 h
to train this model on the same platform and GPU. Due to
overfitting, some complex models, such as Resnet, could not
even achieve a result over 60%. Since our model compresses
the residual layers and adds encoding with high dropout to
help extract features while maintaining sparsity, the overfitting
problem is significantly reduced. As shown in Fig. 3(c) and (d),
our model achieves a relatively high testing accuracy, and the
encoding layers helps reduce the total loss by around 20%,
which proves their ability to relieve overfitting problems.

TABLE V

ASSESSMENT OF BU REGION SELECTION

Fig. 4. Comparison of BU region. (a) Reference map of BU regions.
(b) Predicted BU regions.

C. Accuracy Assessment of Built-Up Region Selection

Table V and Fig. 4 demonstrate the BU region selection
result with our modified SqueezeNet. Our model has an
overall accuracy of 80.5% and a kappa coefficient of 0.56.
From the viewpoint of disaster response, our results are ideal
because of the high producer accuracy, which could help
the responser better grasp the disaster situation. Moreover,
a bidirectional check was conducted to grasp the reason for
erroneous selections. We found that most of the misclassified
NBU regions are characterized by complex scatterers that look
similar to buildings, such as forests and paddy field, and that
most of the misclassified BU regions are intersected by roads
and rivers, which hinder the recognition.

D. Accuracy Assessment of Regional Damage Mapping
The regional damage mapping results with our modified

WRN are described in Table VI and displayed in Fig. 5 with
comparison to the reference data generated from the GTD.
Our method has an overall accuracy of 74.8% and a kappa
coefficient of 0.60. It can be observed that the bias problem
that may result from insufficient data is controlled by using
rotated and mirrored images, and P.A. result of the three
classes only varies less than 2

E. Time Assessment and Reproduction
As described in Section IV, the training of our modified

SqueezeNet and WRN takes around 1 h on a GTX TITAN
X GPU. Thus, if we aim to train on a completely new
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TABLE VI

ASSESSMENT OF REGIONAL DAMAGE MAPPING

Fig. 5. Comparison of regional damage mapping. (a) Damage mapping
result generated from the GTD. (b) Damage mapping result generated from
the recognition model.

region, our framework can be reproduced in around 1 h with
concurrent training on two GPUs, or 2 h on a single GPU.
If we aim to test over a new region, given that it has a similar
geometric outlook as a pretrained model, it takes less than 2
min to finish the whole prediction process if the data set size
is similar to ours. This validates the speed of our framework
for both training and prediction.

V. CONCLUSION

In this letter, we provided a practical and rapid solution
to the problem of tsunami damage mapping at a regional
scale. We introduced a deep learning-based framework for
SAR data preprocessing, rapid BU region extraction, and
automatic building damage mapping. We combined popular
structures of deep neural networks, with special designs to
extract most important features and reduce computational time
requirements. Experiments on the 2011 Tohoku earthquake
and tsunami area validate that our framework is operational
and fast in training and prediction calculations.
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