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Abstract

We employ universal schema for the TAC
KBP slot filling and cold start tasks. The
technique enlarges the set of relations in
an ontology, e.g., TACKBP slots, to con-
tain all surface patterns between pairs of
entities in a large corpus. By factoriz-
ing the matrix of co-occurrences between
entity pairs and universal schema rela-
tions, we are able to predict new target
slots. This differs fundamentally from tra-
ditional relation extraction approaches be-
cause an entire knowledge base is con-
structed jointly over train and test data.
To produce submissions for the slot filling
and cold start tasks, we simply query this
knowledge base. We describe universal
schema, our data preprocessing pipeline,
and additional techniques we employ for
predicting entities’ attributes.

1 Introduction

Due to its importance in information extraction
pipelines, relation extraction has attracted atten-
tion in TAC KBP for a number of years in the
Slot Filling track, and as a vital sub-task of the
recently-introduced Cold-Start track.

Many existing relation extraction tech-
niques (Liu and Zhao, 2012; Min et al., 2012;
Roth et al., 2012) perform the following: (1)
matching of textual mentions to the query
mentions, often utilizing information retrieval
techniques, (2) extraction of the context around
the mention, (3) prediction of the relation being
expressed in the context (if any), and (4) aggre-
gation of the individual classifications to resolve
redundancies and inconsistencies. Although this
overall architecture is common, techniques used
for matching, extraction, relation identification
(using sophisticated rules, lexicons, classifiers,

graphical models, etc.) and aggregation vary
considerably.

There are a number of disadvantages, unfortu-
nately, inherent in such traditional systems. The
foremost problem is obtaining training data for
learning the extractors, as the amount of training
data available as part of KBP is limited. Many
systems use manually-created seed patterns to
bootstrap a labeling (often in combination with
the TACKBP training data), followed by induc-
tion to expand the set of training examples for
the extractors. More recently, distant supervision
approaches, which use the relations in external
knowledge bases such as Freebase or Wikipedia
(manually aligned to the TACKBP schema), have
achieved noteworthy accuracy (Roth et al., 2012).
However, the resulting training data from using ei-
ther seed patterns or distant supervision is often
low-quality due to noise in the process of produc-
ing training data.

Further, it is often not the case that a single
pattern in a sentence is indicative of a relation
between two entities, and instead, multiple rela-
tions/patterns may in combination imply a relation
that is not evident when the patterns are observed
in isolation. For example, recognizing that Apple
Inc. is headquartered in California might require
an extraction that provides evidence that Apple is
located in Palo Alto, and a separate extraction that
indicates Palo Alto is in California. Along with
requiring inference of relations across multiple ex-
tractions, this example further requires extraction
of relations for non-query entities (Palo Alto in this
example) and also would benefit from leveraging
the implicit implications between relations.

In response, we introduce a novel approach to
the TAC KBP slot filling and cold start tasks that
produces answers jointly about all entities and re-
lations, rather than on a query-by-query or per-
extraction basis. From a large collection of doc-
uments consisting of both training and test KBP



documents, we construct a knowledge base over
all the entities (including many that do not ap-
pear in the queries or the reference knowledge
base). Relations extraction is performed using
the matrix factorization-based universal schema
approach (Riedel et al., 2013) that learns corre-
spondences between co-occurring entity pairs, ob-
served textual patterns, and the labeled relations,
as part of a joint optimization over training and
test data. Due to the nature of the factorization,
the model is able to produce confidence values for
its outputs, and generalize to entities for which we
observe surface patterns but were not linked to ref-
erence knowledge base entities.

The overall system consists of the following ar-
chitecture. First, we process the text corpus us-
ing a natural language processing pipeline. This
includes part-of-speech tagging, dependency pars-
ing, mention finding and coreference, as described
in Section 2. Second, we extract binary relations
between pairs of entities using universal schema
(Section 3). In order to predict the string-valued
slots (such as alternate_name) that are not sup-
ported by universal schema, we use manually con-
structed rule-based heuristics (Section 4). The
extractions from two steps are combined and re-
solved as described in Section 5 to produce an in-
ternal knowledge base about the corpus.

Since this was our first year participating in the
TAC KBP Slot Filling and Cold Start tasks, we do
not expect to outperform the existing approaches.
In Section 6, we investigate our predictions on the
KBP 2013 tasks, and demonstrate the various as-
sociations between surface patterns and schema
relations that our model learns. According to the
official evaluation that scores the correctness of
extracted provenances, we obtain 12.5% F1 for
the entity-valued slots and 19.3% for the string-
valued slots. Further, we observe that our univer-
sal schema extraction method achieves high recall,
but suffers from low precision. Conversely, our
rule-based extractors produce high precision and
low recall. Overall, we achieve 13.7% F1 for slot
filling, and 7% F1 for cold start.

2 Data Processing Pipeline

Figure 1 outlines our processing pipeline. The
pipeline is nearly identical for both our slot fill-
ing and cold start systems; it differs only in the set
of documents and queries that are used, and the
filtering, if any, of the resulting knowledge base in
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Figure 1: UMass IESL Pipeline: Earlier stages
process each document independently. However,
in later stages, the pipeline treats relation extrac-
tion as joint inference of the output KB.

the final stage. For slot filling, we are given a list
of queries, which we issue to our knowledge base.
For cold start, we query for every relation for all
the entities that appear in cold start documents.

2.1 Corpus Selection

Recall that universal schema performs relation ex-
traction jointly on train and test data. Therefore,
we need to assemble a sub-collection of the TAC
KBP training documents that are relevant either
for training or for answering the queries. For slot
filling, we select 120K documents by performing
query expansion on the 2013 queries (both training
and test) using the Galago index on all the KBP
source documents (Cartright et al., 2012), used for
entity linking in TAC KBP 2012 (Dietz and Dal-
ton, 2012). For the cold start track, we append the
the cold start source documents to this collection.



2.2 Natural Language Processing

We employ the open-source FACTORIE pack-
age (McCallum et al., 2009) as our natural lan-
guage processing pipeline for processing the doc-
uments. This software package includes a num-
ber of state-of-the-art machine learning models for
NLP processing, including part-of-speech, depen-
dency parsing, named entity recognition (NER),
and within-document coreference.

2.3 Mention Finding and Entity Discovery

Mention finding and entity discovery play a crit-
ical role in our pipeline, since without accurate
entities, we cannot build a high quality knowl-
edge base to answer the TACKBP slot filling and
cold start queries. Our set of mentions con-
sist of the detected named entities and pronouns,
as well as all queries and annotations. We use
the FACTORIE within-document coreference sys-
tem to cluster mentions for each document into
anaphoric sets. This system performs greedy left-
to-right grouping of mentions with features based
on Bengtson and Roth (2008).

To assemble the cross-document entities for the
knowledge base, all the within-document entities,
along with entities from the reference KB, need
to be aggregated. The observed string names of
the within-document and the reference entities are
normalized by removing prefixes and suffixes such
as titles and honorifics, and expanding acronyms,
followed by a string-matching based grouping.
For cold-start, we also include relation annota-
tions from Freebase (described in the next section)
for which we perform trivial linking of Freebase
entities and our cross-document entities based on
available names and redirects in Freebase.

3 Slot Filling Using Universal Schema

We cast slot filling as relation extraction, consid-
ering each slot as a relation instance of the query
and the slot value. We employ universal schema
for slot filling (Riedel et al., 2013). Instead of clas-
sifying entity pairs into pre-defined relation types,
universal schema takes both the surface patterns
and pre-defined types as relations, and uses ma-
trix factorization to discover implications among
them. This approach can leverage unlabeled data,
while avoiding brittle alignment errors in the dis-
tant supervision methods that have been popular in
recent TAC KBP submissions.

We fill a matrix with relation instances, where

defender 
in president chief 

executive
org:top

members
org:

members

Bob Dillinger, 
Pinellas 1 N N N 1

MSNBC,
Dan Abrams N Y 1 Y 1

McDonald's, 
Walt Riker N 1 Y Y Y

surface patterns TACKBP Slots

train 
pairs

test 
pairs

Figure 2: Illustration of universal schema. Each
row represents an entity pair and each column a
relation. Observed cells (green cells marked “1")
denote that an entity pair co-occurs with a relation
in text or in TACKBP annotation. The rest of the
cells are unobserved during training, and are filled
with oracle decisions on whether the fact holds.
Our goal is to predict whether a relation (slot) is
true for particular entity pairs. The last row is an
example test pair, we predict two slots for this pair
(light green cells).

each row corresponds to an entity pair and each
column to a relation, including surface features
and slot names. The surface features include the
sequence of words between two entity mentions,
the dependency path connecting two mentions,
NER tags of the mentions, and so on. We only
include TACKBP slots that describe relations be-
tween two entities (i.e. the entity-valued slots).
Our goal is to predict target slots for the entity
pairs. Matrix factorization, that provides a low-
dimensional embedding for each row (entity pair)
and column (slot or surface pattern), is used to
discover implicature among surface features and
slots.

Before we describe our model and algorithm,
we illustrate how universal schema works in Fig-
ure 2. During training, we learn low dimen-
sional embeddings for entity pairs and relations
using observed patterns, which can be used to
complete unobserved cells of the matrix. As
shown in the example, we would like to learn
that org:top_members implies org:members,
“president” is indicative of org:top_member
only if org:members holds, and so on. Once we
learn the embeddings of the rows and columns, we
query the scores of the relevant cells, and picks the
confident ones to be included into the output KB.
For slot filling we only query cells that have a KBP
query mention as part of the entity pair and one of
the KBP slots as the column.



3.1 Matrix Factorization

For matrix factorization, we embed each entity
pair (row) e and relation/feature (column) r as la-
tent vectors ae and vr in a K-dimensional space,
respectively. To model each binary entry in the
matrix, we use a logistic regression version of ma-
trix factorization that is appropriate for binary ma-
trices (Collins et al., 2001). Thus model for each
cell xe,r is as follows:

θe,r =
∑
c

ae,cvr,c

xe,r = σ(θe,r)

where, σ(θ) =
1

1 + exp(−θ)

The first formula factorizes the matrix into mul-
tiplication of two smaller matrices. The sec-
ond formula applies the logistic function to the θ
scores obtained from factorization to model a bi-
nary cell. This has a probabilistic interpretation:
each cell is drawn from a Bernoulli distribution
with natural parameter θ. Note that an observed
pattern or slot r between an entity pair e is en-
coded by xe,r = σ(θe,r) ≡ 1.

In the following, we describe how we train our
model. We learn low dimensional representations
for entity pairs and relations by maximizing the
log likelihood of the observed cells under the prob-
abilistic model above. Note that in our training
data we only observe positive cells and have no ac-
curate data on which relations do not hold for an
entity. However, learning requires negative train-
ing data. We address this issue by sampling un-
observed relations for an entity based on their fre-
quencies in the whole dataset and treating them as
negative. The joint probability of all cells is de-
fined as:∏

e,r

p(xe,r = 1)δ(x=1)(1− p(xe,r = 0))δ(x=0)

=
∏
e,r

σ(θe,r)
δ(x=1)(1− σ(θe,r))δ(x=0)

For simplicity, we elide the subscript of each cell,
and δ(x = 1) is the number of observed cells.

To further simplify the joint probability, we rep-
resent negative cells as positive by choosing a dif-
ferent natural parameter. Thus the joint probability
becomes

∏
e,r σ(θe,r). Incorporating regulariza-

tion and expanding terms, log-likelihood training

can be described as the following optimization:

argmax
θ

∑
(e,r)

log σ(
∑
c

ae,cvr,c)−λ(||a||22+ ||v||22)

We use stochastic gradient optimization to ef-
fectively deal with the large scale of our matrices.
In each iteration, we traverse random permutations
of all training cells, randomly sample 3 to 5 nega-
tive cells for each training cell, and update the cor-
responding ae and vr vectors for the positive and
negative cells based on their corresponding gradi-
ents. We update the parameters of a positive cell
(e, r) using the following formulas, iterating over
each component c, with learning rate l:

ae,c + = l(1− σ(θ))vr,c − λae,c
vr,c + = l(1− σ(θ))ae,c − λvr,c

Likewise for a negative cell, we update the param-
eters using:

ae,c + = l(0− σ(θ))vr,c − λae,c
vr,c + = l(0− σ(θ))ae,c − λvr,c

For confidence of our prediction, we use its
score, i.e. xe,r = σ(θe,r).

3.2 Observed Cells
The above approach learns dependence among the
columns of the matrix, which, in our case, con-
sists of observed surface patterns and relations de-
scribed in this section.

We use the dependency path of the sentence and
the word sequence between two entity mentions
as surface patterns. Additionally, we use conjunc-
tions of trigger words and entity types (see Table 1
for examples). A dependency path is a concate-
nation of dependency relations and words on the
path connecting two entity nodes, as shown in the
table. The suffix “:BACK" signals that the second
argument of the entity pair comes before the first
in the sentence. The trigger is usually taken as the
root of the path connecting the two nodes.

For the relations, the columns consist of re-
lation types as defined by a schema. The
TAC KBP slot names, such as per:spouse or
org:founded_by, appear as columns with ob-
served cells for entity pairs that are annotated ei-
ther in TAC KBP training documents or in the ref-
erence KB. These columns are crucial for learning
from surface patterns, and for predicting a TAC
KBP relation between any entity pair. For cold



Feature Type Example
Dep-path ↑pobj↑in↑prep↑die↓nsubj↓

Words die in:BACK
Type-Words-Type ORG-die in:BACK-PER
Type-Trigger-Type ORG|die|PER

Table 1: Surface patterns used in universal
schema. These patterns are extracted for entity
pair (Abbey Church, Father Daniel) from sentence
“Father Daniel died in the Abbey Church at Saint
Anselm"

Text Patterns KBP 
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KBP Entities Extractions on  
KBP Source Documents
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Figure 3: Universal Schema for for KBP: An
illustration of the complete matrix used for uni-
versal schema. The gray areas are partially ob-
served cells, where “KBP Annotations” represent
both the KBP reference KB and the training anno-
tations. “Predict” denotes that parts of the matrix
that we need to predict. Note that for cold start we
do not observe any KBP or Freebase relations.

start, we also include a number of additional en-
tity pairs from Freebase, including columns that
denote Freebase relations between them (allow-
ing our system to learn the associations between
surface patterns, TAC relations, and the Freebase
relations). The data sources used for universal
schema for slot-filling and cold-start is illustrated
in Figure 3, showing the various observed cells,
and the cells that need to be predicted for the tasks.

3.3 Provenance Prediction

Since universal schema models the relations at a
corpus-level, the extractions are predicted using a
combination of evidence from multiple observed
patterns and freebase annotations, making the task
of identifying a single provenance of a predicted
slot-value non-trivial. Fortunately, the embedding
of all relations, both from the target schema and
from surface patterns, into a common euclidean
space allows us to estimate the most likely prove-

nance for our predictions. First, we compute the
pairwise similarities between the embeddings for
every pair of columns. For a given prediction,
for example X is related to Y by the relation
employee_of, we consider all surface pattern
columns that were observed for the pair (X,Y ),
and select the pattern that has an embedding most
similar to the embedding for employee_of. We
use the sentence that produced the observed cell
for this column as the provenance.

4 Attribute Relation Extraction

Some slots fillers are string-valued (or attribute-
value) as opposed to entity-valued. We manually
build relation extractors for each attribute slot
based on a set of rules. Each extractor takes
an entity mention and the sentences in which
it appears as input, and outputs a sequence
of attribute relation instances. Extractors also
provide a confidence score for each extracted
relation that is hard-coded and determined em-
pirically. These confidence scores are used in
post-processing for determining which relations
should be included in the final output. Fur-
ther, we do not extract all relations, ignoring
ones have been historically infrequent such
as political_religious_affiliation,
number_of_employees, and org:website.

4.1 Trigger Based Extraction

Most of our attribute relation extractors use man-
ually crafted lists of trigger words as signals.
When an input sentence containing a query men-
tion also contains a trigger word, the correspond-
ing extractor attempts to extract an attribute in-
volving the mention and trigger word. This ex-
tractor considers a number of features of the trig-
ger/mention pair such as the number of words
separating the two, the word sequence occurring
between the mention and trigger, and the or-
der of the mention and trigger. Inspired by re-
cent work (Roth et al., 2012), trigger words for
slots per:cause_of_death, per:religion,
and per:charges are extracted from respec-
tive Freebase categories, while trigger words for
other slots consist of small lists (less than 10) of
manually-collected words. For example, trigger
words for the per:title relation include: “sec-
retary,” “technician,” “’congressman,” “rep.,” etc.



4.2 Title Extractor

Since titles have been historically extremely
prominent in the KBP Slot Filling track, we de-
sign additional rules for extracting titles. These
rules are based on the dependency parse of the sen-
tence containing a query mention. Specifically, if
the parent or a sibling of the query mention in the
dependency tree is labeled as an “appositive”, we
attempt to extract a title relation between the token
and the mention using the type of dependencies.

4.3 Date Extraction

A number of attribute relations require ex-
traction of dates from text, for example age,
date_of_birth, date_founded, etc. We iden-
tify dates in each document using the Natty date
parser (Stelmach, 2013). Extractors for date-
related slots require both the presence of a trig-
ger word and a date in the input sentence. Some
date-related relation extractors may also extract
values of multiple relations. For example, us-
ing the publishing date of a document in addition
to an assertion of the age of a recently deceased
person, the extractor of age would also infer the
date_of_death.

4.4 Alternate Names Extraction

Within-document and cross-document corefer-
ence links all the entities in our knowledge
base to their mentions in the text corpus. Us-
ing this extracted knowledge base, we are able
to directly extract per:alternate_names and
org:alternate_names by aggregating the text
mentions of all the entities.

5 Relation Resolution

In part due to our slot filling (relation extraction)
strategy and in part due to some relation extraction
not being performed jointly (e.g. attribute rela-
tions), the set of extracted fillers for a mention/slot
pair can be invalid with respect to the slot. For ex-
ample, our relation extraction system could extract
inconsistent per:date_of_birth values for the
same entity. Additionally, our system may extract
multiple values for a uniqe-valued relation (for ex-
ample per:city_of_birth. To remedy these
problem, we employ a suite of simple resolvers
that handle these issues on a case by case basis.

For single-valued slots (i.e. per:age), we use
a resolver that outputs the filler with the high-
est confidence. For multiple-valued slots (i.e.

per:alternate_names), we threshold the num-
ber of (unique) fillers output by only picking the
top k–ranked either by confidence or by the num-
ber of appearances (i.e. the filler “50” was ex-
tracted for entity e_1 and relations per:age 20
times). By thresholding, we hoped to increase pre-
cision without substantially decreasing the recall.

6 Results

In this section we investigate the performance of
our system on Slot-Filling and Cold-Start tasks,
and analyze the errors made by the system.

6.1 Universal Schema
We use universal schema to learn dependencies
between surface patterns and relations, which
are used to infer relations between observed en-
tity pairs. Here we provide both the evaluation
in terms of the accuracy of the predictions, but
also qualitative exploration of the dependencies
learned by the approach.

6.1.1 Embeddings
To interpret the embeddings of the surface pat-
terns, we calculate the cosine similarity between
vectors of a TAC relation column and other
columns. We list the top ranked patterns with
respect to each target slot in Table 2. For sim-
plicity, we translate the dependency path to word
sequence. To generalize the patterns, we re-
place tokens of part-of-speech tag “NNP" with
their tags. For example, in pattern “replace NNP
NNP as face of," those two “NNP" tokens may
stand for a person name. The suffix “:INV" in-
dicates that the two arguments are in inverse po-
sition. Some patterns are augmented with entity
types of the two arguments. Slots that are simi-
lar to the target slots are also shown, for example,
per:organizations_founded is indicative of
slot employee_of.

We observe here that our approach can learn di-
verse and accurate patterns that are indicative of
the target slots. For example, we extract patterns
that contain “ex-wife," “hubby," “file divorce" for
spouse, patterns that include “pay by," “resign
from" for employee_of. We also analyze errors
made by our approach. Some errors are caused
by incorrect dependency path extracted from the
text. For example, pattern “X into a career to Y"
is closely related to spouse due to incorrectly ex-
tracting the path for entity pair (Lucinda, Robert
Morgenthau) from the sentence “Lucinda into a



Slot Patterns
PER|pay by state of|LOC, pay by state of, who resign from,
have resign in protest from, have be select as candidate of,
PER|cartoonist at|UKN, be announce as be, LOC|NNP attend summit of|ORG

employeeOf have make his/her legend since sign from, make start in,
work as register lobbyist for, PER|defender in NNP|ORG
PER|executive who run|UKN, replace NNP NNP as face of,
per:organizations_founded , PER|be play position for|ORG
be perform with NNP NNP at, PER|revenue NNP|PER, PER|have be from|ORG
PER|be live in|LOC, NNPS on death row in, PER|citizen of|LOC

cityOf PER|family live in|LOC, PER|his/her brother live in|LOC,
Residence be wheel into court in, PER|where X grow up|LOC, who be away from,

be son of NNP NNP NNP of, PER|who be a native of|LOC
X, a Y prisoner; bounce between his/her home in, since X live in Y
from his/her days in college at, be junior at, revel in NNP NNP success at
hockey player for, be graduate of NNP NNP NNP,

schools have be select as candidate of, have resign in protest from, per:employee_or_member_of
Attended director of NNP for NNPS at; PER|pay by state of|LOC;

X, Y deputy managing director; PER|lawyer be hire by|ORG; policy adviser on NNP at
PER|be coach at|ORG, PER|professor of education at|ORG, who earn at
into a career to, doled punishment, PER|X’s ex-husband, Y|PER
have file for divorce from her husband, file for divorce from,

spouse PER|X, Y’s ex-husband|PER, PER|hubby|PER, marry actress,
file for divorce from music producer, marry socialite; accompany by his wife;
X, Y’s ex-wife; X join her/his fiance Y,
photographed with fiance, PER|X, Y’s girlfriend|PER
ORG|research growth rate for|LOC, its parent firm NNP NNP NNP, be subsidiary of,
X, operated by Y:INV, UKN|populace be obliterate|ORG
ORG|headquarters that NNP|ORG, UKN|court while|ORG,

subsidiaries headquarters that NNP, sell NNP brokerage business, ORG|mecca|ORG
ORG|X, a venture of Y:INV|ORG, ORG|X company Y|ORG,
PER|be split into|ORG, ORG|which is bought by:INV|ORG
ORG|which own percent of|ORG, ORG|NNP parent of|ORG
ORG|parent company of|ORG, own NNP broadcast network
ORG|lender base in|UKN, NNP announce at
ORG|NNP NNP program in|LOC, ORG|be headquartered in|LOC

headquarters ORG|think tank in|LOC, ORG|research center in|LOC
ORG|X, a Y-based bank|LOC , ORG|X, Y organization|LOC
ORG|policy group in|LOC, tenant right organization base in downtown

Table 2: Top similar patterns to the target slots.



Slot Prec Rec F1
children 0.154 0.266 0.195
cities_of_residence 0.238 0.294 0.263
city_of_birth 0.083 0.077 0.080
city_of_death 0.478 0.314 0.379
countries_of_residence 0.149 0.204 0.172
employeeOf 0.435 0.118 0.186
origin 0.020 0.016 0.018
parents 0.023 0.103 0.038
schools_attended 0.063 0.034 0.044
siblings 0.025 0.231 0.044
spouse 0.138 0.271 0.183
state_of_death 0.188 0.120 0.146
states_of_residence 0.109 0.207 0.413
city_of_headquarters 0.125 0.125 0.125
country_of_headquarters 0.160 0.082 0.108
founded_by 0.025 0.100 0.040
member_of 0.007 0.250 0.013
parents 0.036 0.286 0.063
shareholders 0.037 0.412 0.068
members 0.010 0.045 0.017
state_of_headquarters 0.350 0.318 0.333
subsidiaries 0.053 0.235 0.086
top_employees 0.398 0.279 0.328
Overall 0.094 0.183 0.125

Table 3: Entity-based Slots: Performance on dif-
ferent slots. We first list person slots, followed by
organization slots. Our approach obtains high re-
call.

Pulitzer Prize-winning career in journalism and
marriage to New York District Attorney Robert
Morgenthau." Since annotation data is limited, this
pattern is in the top ranked list for predicting
spouse. Other errors arise since our model is un-
able to distinguish two slots from each other. For
example, some surface patterns that are similar to
employee_of are also in the top ranked list for
schools_attended. However, our model does
learn patterns specific to schools, such as “be ju-
nior at," “his/her college in," and “graduate of."

6.1.2 Evaluation of the Predictions
We evaluate the predictions of the universal
schema model on the 2013 Slot-Filling task. Table
3 lists precision, recall and F1 measures for differ-
ent slots. We can see that our approach achieves
relatively high recall. As we describe in the pre-
vious section, most of our errors arise from rela-
tions that can be expressed in significantly differ-
ent ways (for e.g. member_of), but do not have
ample observed patterns.

6.2 Attribute Extraction

We evaluate the attribute extraction system on
the 2013 Slot Filling attribute-valued slots in Ta-

Slot Prec Rec F1
alternate_names 0.150 0.097 0.118
title 0.259 0.199 0.225
charges 0.130 0.058 0.080
date_of_birth 0.400 0.060 0.105
date_of_death 0.290 0.100 0.149
age 0.786 0.224 0.349
cause_of_death 0.417 0.182 0.253
religion 0.200 0.250 0.222
alternate_names 0.234 0.202 0.217
date_founded 0.556 0.313 0.400
Overall 0.272 0.150 0.193

Table 4: String-based Slots: Performance on at-
tribute slots of people and organizations. We em-
ploy rule based extraction for these slots.

Systems Precison Recall F1
Top-1 42.53 33.17 37.27
Top-10 30.34 9.67 14.67

UMass IESL 10.88 18.46 13.69

Table 5: KBP 2013 Slot Filling: Comparison of
our system to other participants. We submitted
only a single run, are were placed 11th out of the
18 participant teams.

ble 4. As expected, the rule based extractors
achieve high precision, while their recall is rel-
atively lower. The better performance of string-
valued slots as compared to entity-valued may be
explained by the fact that they are likely to be eas-
ier to extract than entity-valued relations, as the
latter requires combination of information about
the entity across multiple documents.

6.3 Comparison to KBP 2013 Participants
We compare our system to the other KBP 2013
participants according to the official evaluation.
For the slot-filling tasks, as shown in Table 5,
we obtain an overall F1 of 13.7%, with a rel-
atively high recall compared to participants that
performed similarly. In Cold-Start, we obtain a
combined 0-hop and 1-hop F1 of 7.03%. For
the 1-hop evaluation, for which entity-valued re-
lations are more important, our score is higher
than NYU’s. This perhaps indicates that the our
string-valued slot extraction rules perform rela-
tively poor, and this has a significant impact on
the overall evaluation.



Systems 0-hop 1-hop Combined
Prec Rec F1 Prec Rec F1 Prec Rec F1

UMass IESL 25.24 5.06 8.44 11.42 3.46 5.32 17.88 4.38 7.03
NYU 45.81 7.28 12.56 16.35 1.96 3.5 35.15 4.99 8.74

HLT-COE 40.54 32.7 36.2 21.36 11.02 14.54 34.3 23.39 27.81

Table 6: KBP 2013 Cold Start: Comparison of our systems to other two participants.

7 Conclusion and Future Work

We presented universal schema, our overall frame-
work for TAC KBP slot filling and cold start. It
differs from existing systems in that it considers
all entities, relations, surface patterns, and anno-
tations jointly in a holistic manner. We effec-
tively construct a database about the entities that
appear in the input documents (training and test),
and query this database to provide our submission.

A number of avenues exist for future work.
We feel our prediction suffered due to the use
of a simple cross-document system and the fact
that our within-document coreference did not
utilize external information sources. We look
forward to incorporating sophisticated hierarchi-
cal cross-document coreference (Singh et al.,
2011) and KB-supervised within-document coref-
erence (Zheng et al., 2013). Future work will
also explore expansion of the features used in
the universal schema model, including lexicons,
additional Freebase relations, and inferred entity
types (Yao et al., 2013).
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