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Yet another PPL?

Existing PPLs pick a "representation":
   • Undirected Graphical Models
   • Bayesian Models
   • Markov Logic Networks
   • Other Logic-based formulations

Advantages:
+ Precisely defines the semantics
+ Easy to compile/optimize for efficiency

But it can be restrictive:
- Practical models may not be possible
- Cannot be future-proofed
- May not be concise for all applications
- Cannot easily combine with other PPLs

"Bring probabilistic programming as 
close to the underlying math as 

possible."

- Math is concise, precise, universal
- Can represent current & future models
- Allows combination of different 

paradigms in the same framework

Wolfe
Akin to machine learning math, a Wolfe 

probabilistic program consists of a set of 
scalar functions (for the model and loss), 

and a small set of operators that are 
applied to them to define inference/

learning. Given such a mathematical 
description in a functional language, 

Wolfe converts the operator applications to 
efficient runtime code.

Components

Search Space
Define all possible values.

Scalar Functions
Define real-value functions over 
the search space to define 
models (energy or density) and 
objectives.

Operators
Combine model and objectives 
with search space to define 
inference and learning. 
Operators are: argmax, argmin, 
sum, map, logZ, and expect

Wolfe Code

case1class!Chain(x:Seq[String],y:Seq[String])
def!chains!=!seqs(strings)!x!seqs(strings)

def!features(c:!Chain)!=!{
!!val!n!=!s.x.size!!!!
!!sum(0!until!n)!{
!!!!i=>oneHot('obsD>s.x(i)D>s.y(i))}!+
!!sum(0!until!nD1)!{
!!!!i=>oneHot('transD>s.y(i)D>s.y(i+1))}
}
def!m(w:!Vector)(s:!Chain)!=!w!dot!features(s)

def!h(w:!Vector)(x:!Seq[String])!=!
!!!!argmax(chains!st!_.x==x){m(w)}
def!loss(data:!Seq[Chain])(w:!Vector)!=!
!!!!sum(data)!{!s!=>!m(w)(h(w)(s.x))!D!m(w)(s)!}

val!(train,test)!=!NLP.conll2000Data()
val!w!=!argmin(vectors)!{!loss(train)!}
val!predicted!=!map(test)!{h(w)}

Efficiency
Wolfe maintains efficiency due to:

•   Analyzes code during compile time
        - no overhead at runtime

•   Generated code is natively compiled
    - enables Scala compiler optimizations
•   Allows users to inject customizations

        - using Scala @Annotations
•   Uses efficient implementations

        - Gurobi for ILP, Factorie for learning
        - can be multi-core, GPUs, etc.

Current Status
Currently, compiles to a factor graph.
Inference:

• Sum/Max-Product BP
• Junction Tree Inference
• Gibbs Sampling
• Integer Linear Programming

Learning:
• Structure perceptron
• Batch Methods (LBFGS)
• Stochastic Approaches:

               SGD, AdaGrad, AROW, etc.

Future Work
    •   More inference & learning methods
        - generative, matrix factorization

•   Deeper code analysis
        - more sophisticated pattern matching

•   Use even more existing packages
        - efficient inference implementations

•   Automatic derivatives 
        - compute gradients automatically

•   Interactive Debugging
        - browser-based visualization

Linear Chains
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